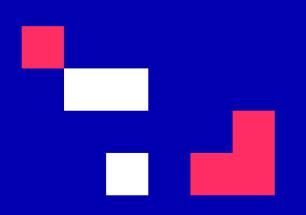


University of Cyprus

MAI645 - Machine Learning for Graphics and Computer Vision

Marios Loizou, PhD Spring Semester 2025



3D Vision

These notes are mainly based on the following works:

- Fei-Fei Li, Jiajun Wu, Ruohan Gao, CS231n Deep Learning for Computer Vision, Stanford University
- Hao Su, Jiayuan Gu, Minghua Liu, Tutorial on 3D Deep Learning, University of California San Diego
- Evangelos Kalogerakis, Deep learning architectures for 3D shape analysis and synthesis,
 University of Massachusetts Amherst

3D Vision

Notes have been prepared by **Dr. Marios Loizou**Research Associate at Visual Computing Group at
CYENS Centre of Excellence

Master programmes in Artificial Intelligence 4 Careers in Europe

Today's Agenda

- Who are we?
- What is 3D Vision
- Geometry
- 3D shape representations
- 3D shape datasets
- 3D Deep Learning architectures
- What we do

Master programmes in Artificial Intelligence 4 Careers in Europe

Today's Agenda

- Who are we?
- What is 3D Vision
- Geometry
- 3D shape representations
- 3D shape datasets
- 3D Deep Learning architectures
- What we do

Who are we?

Visual Computing Group at CYENS Centre of Excellence

Melinos Averkiou MRG Leader

Yiangos Georgiou Research Associate

Marios Loizou
Research Associate

Yeshwanth Kumar Adimoolam Research Associate

Master programmes in Artificial Intelligence 4 Careers in Europe

Today's Agenda

- Who are we?
- What is 3D Vision
- Geometry
- 3D shape representations
- 3D shape datasets
- 3D Deep Learning architectures
- What we do

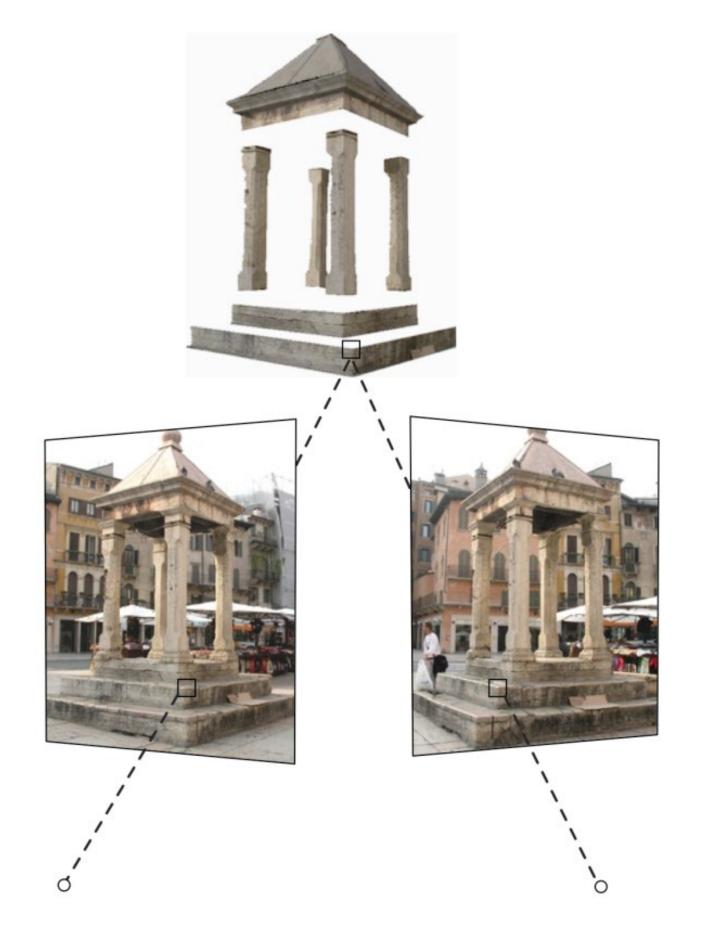
What is 3D Vision: Overview

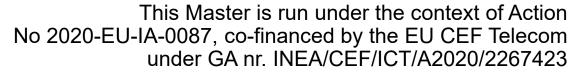
- Teaching the computer (learning) to understand the 3D world around it
- In 3D Vision the input data lie in the 3D space, rather the 2D domain as in the case of images (2D Vision)
- Deep Learning algorithms and architectures are specifically designed to process this type of data

What is 3D Vision: Overview

Traditional 3D Vision

• Multi-view Geometry: Structure from Motion (SfM)

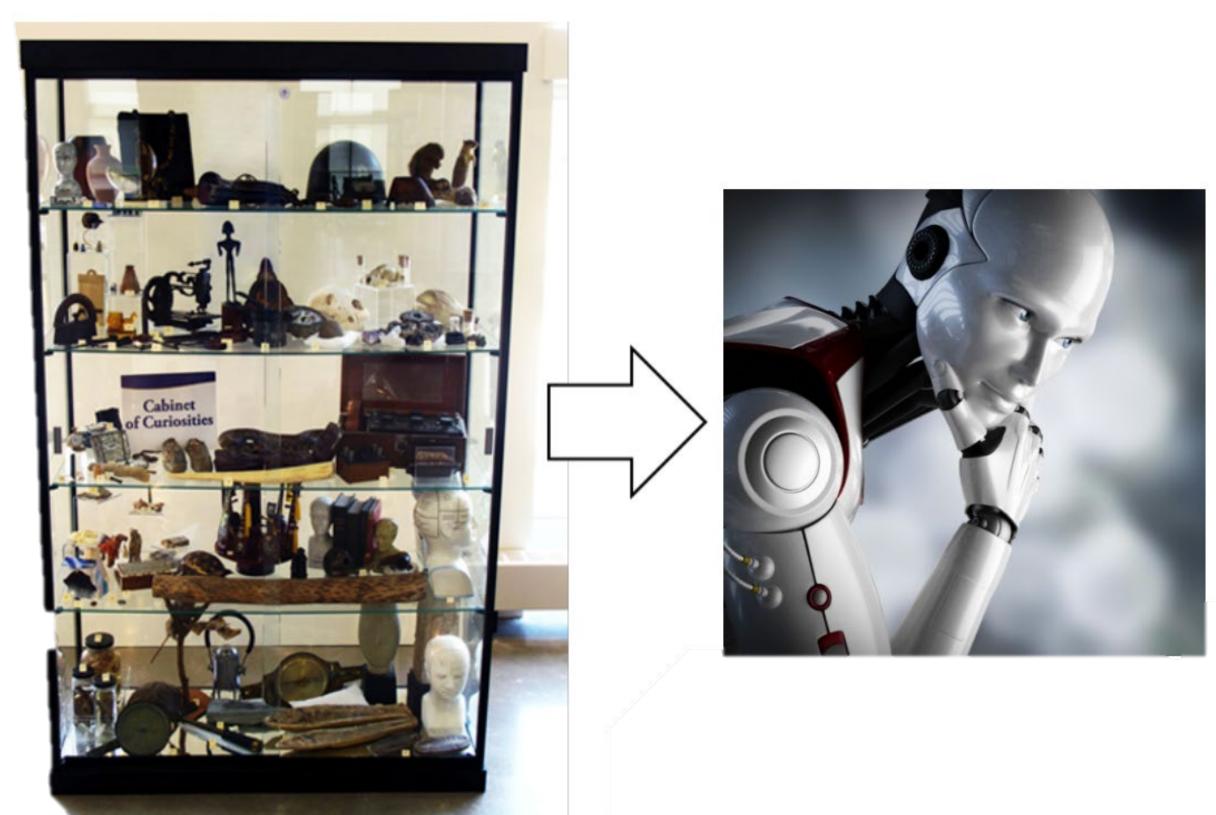




What is 3D Vision: Overview

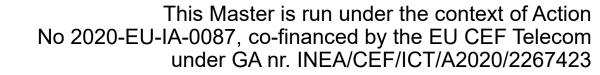
Now

 Acquire knowledge of the 3D world by Learning



What is 3D Vision: Tasks (a very small subset)

Object Classification



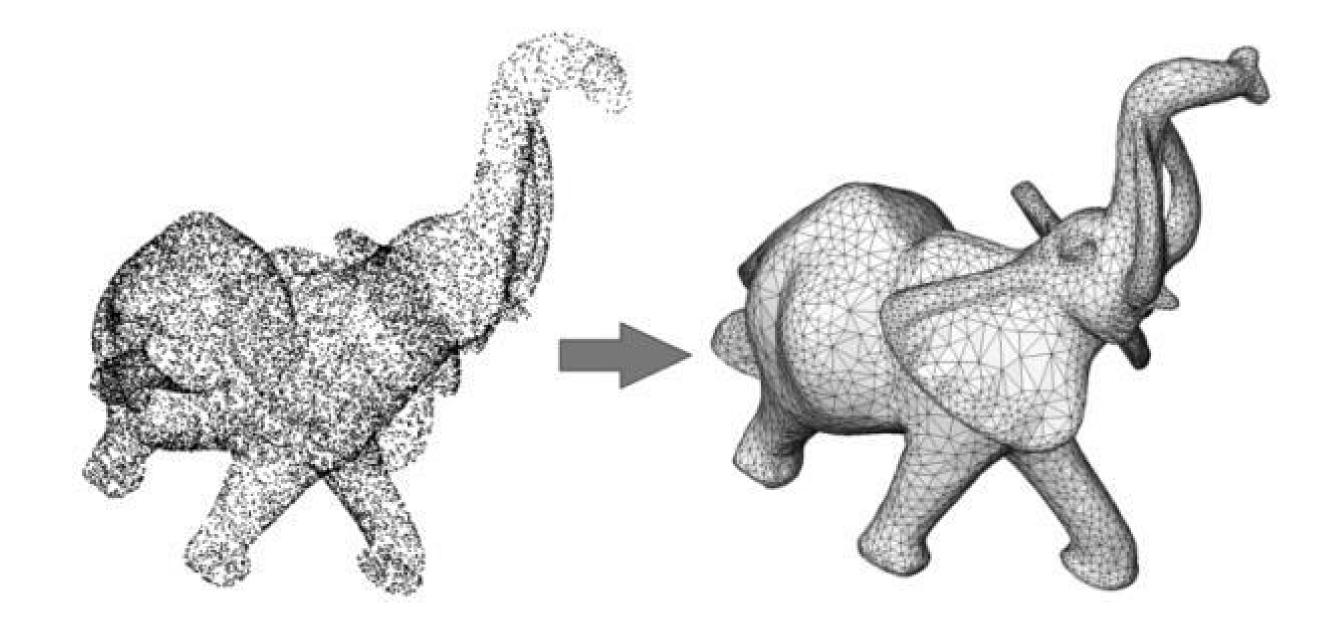
What is 3D Vision: Tasks (a very small subset)

Indoor Scene Segmentation

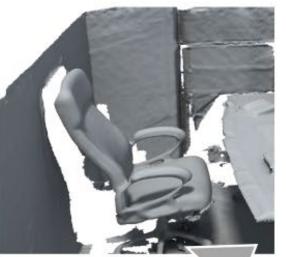
This Master is run under the context of Action No 2020-EU-IA-0087, co-financed by the EU CEF Telecom under GA nr. INEA/CEF/ICT/A2020/2267423

What is 3D Vision: Tasks (a very small subset)

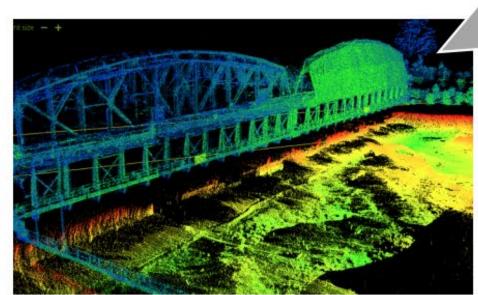
Surface reconstruction



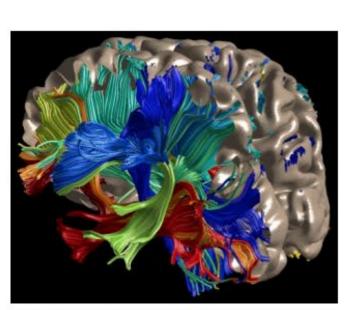
What is 3D Vision: Applications



Robotics

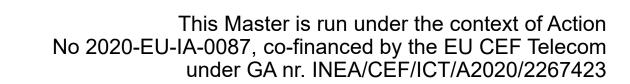


Autonomous driving



Medical Image Processing

Hao Su et al.



MA 4CAREU

Master programmes in Artificial Intelligence 4 Careers in Europe

Today's Agenda

- Who are we?
- What is 3D Vision
- Geometry
- 3D shape representations
- 3D shape datasets
- 3D Deep Learning architectures
- What we do

Geometry: Definition

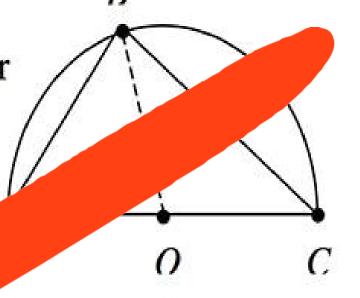
Geometry is the study of two-column proofs

The TM 9.5. Let $\triangle ABC$ be inscribed in a semicircle with diameter

A C.

Then $\angle ABc$ It angle.

Proof:



Statement

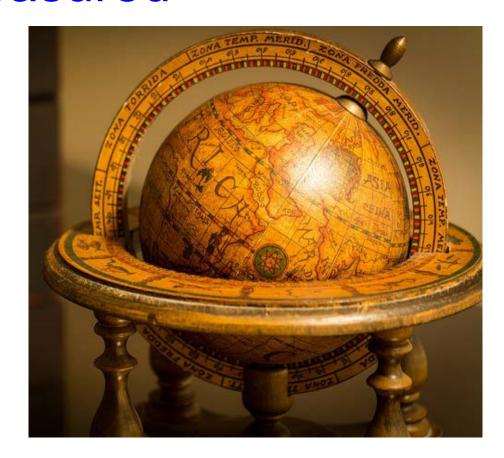
- 1. Draw radius OB. Then OB = OC = OA
- 2. $m\angle OBC = m\angle BCA$ $m\angle OBA = m\angle BAC$
- 3. $m\angle ABC = m\angle OBA + m$
- 4. $m\angle ABC + m\angle BCA$ AC = 180
- 5. $m\angle ABC + m + m\angle OBA = 180$
- 6. 2 m \(A^T \) 180
- 7. m = 90
- 8. ZABC is a right angle

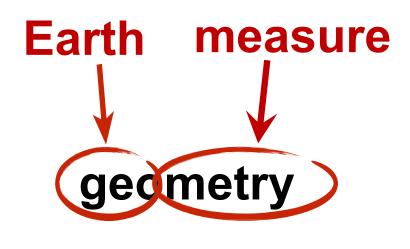
Rec

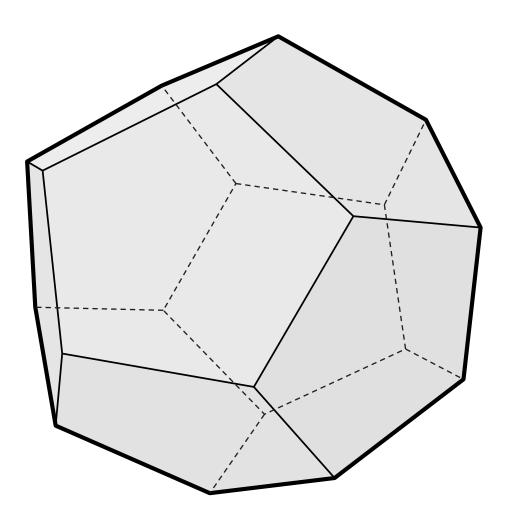
- celes Triangle Theorem
- 3. Angle tulate
- 4. The sum of the soft a triangle is 180
- 5. Substitution (line 2)
- 6. Substitution (line 3)
- 7. Division Property of Equality Keenan Crane
- 8. Definition of Right Angle

Geometry: Definition

- 1. The study of **shapes**, sizes, patterns and positions
- 2. The study of **spaces** where some quantity can be measured







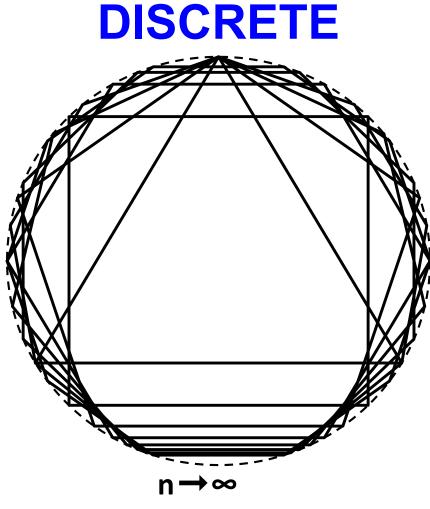
Plato «... the earth is in appearance like one of those balls which have leather coverings in twelve pieces...»

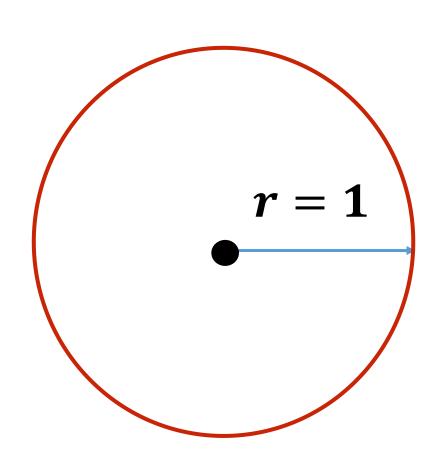
Geometry: How to encode geometry?

 $\frac{\mathsf{IMPLICIT}}{x^2 + y^2} = 1$

LINGUISTIC
"unit circle"

EXPLICIT $(cos\theta, sin\theta)$

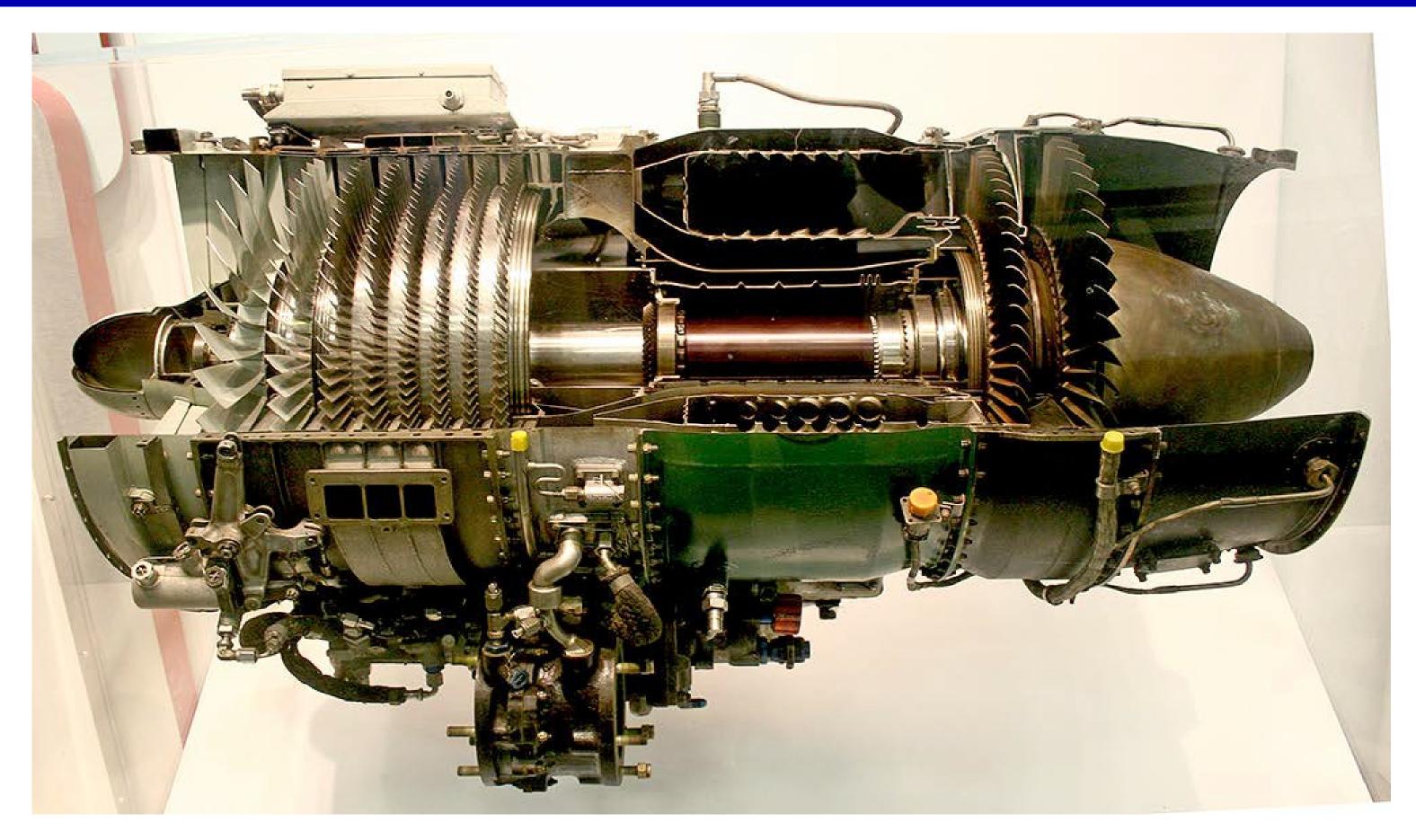




Given all these options, what's the **best** way to encode geometry on a computer?

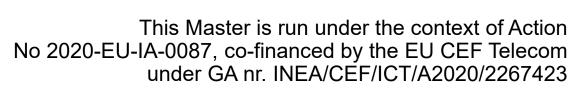
Geometry: Examples

Geometry: Examples

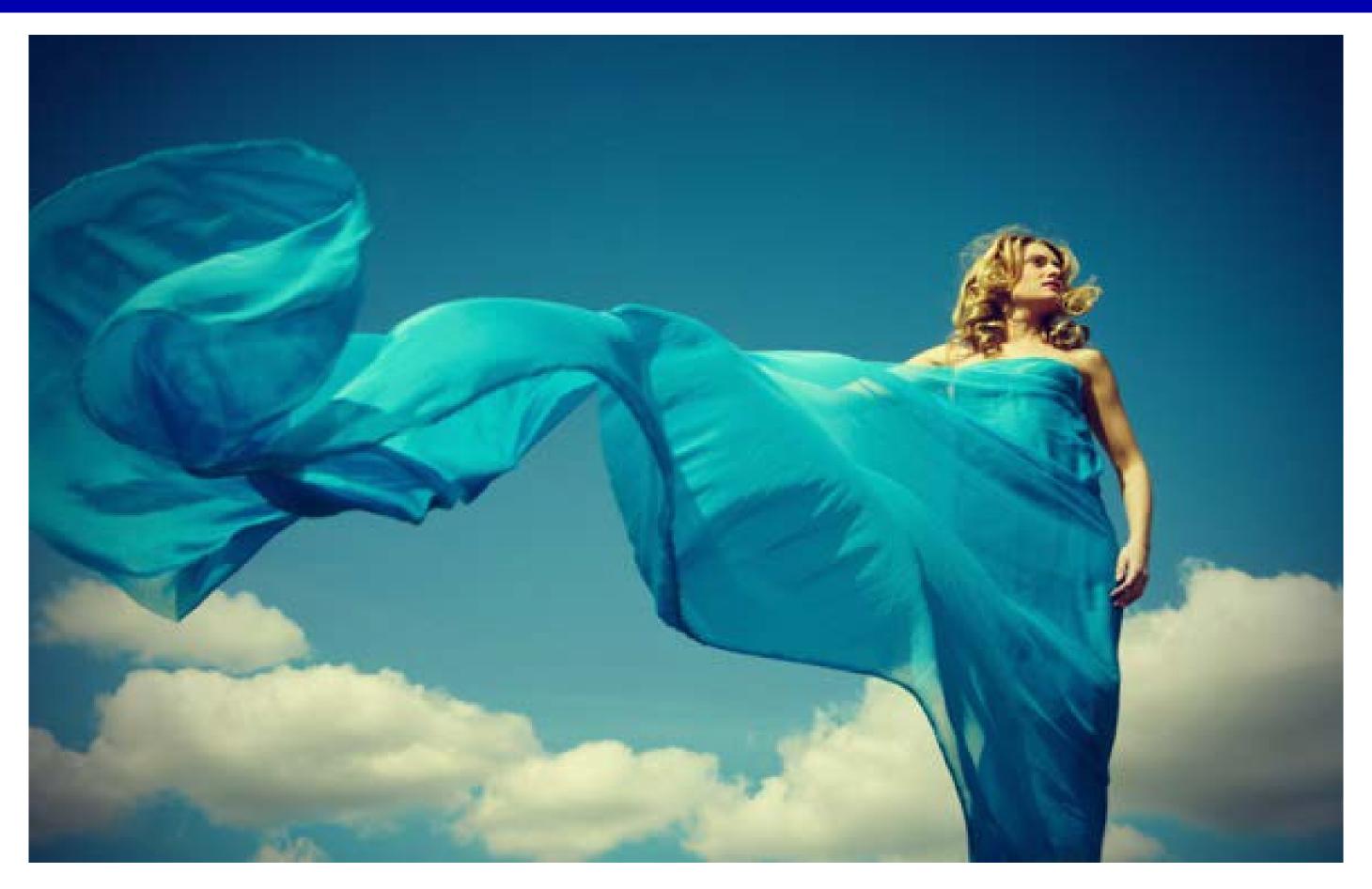


Geometry: Examples

21

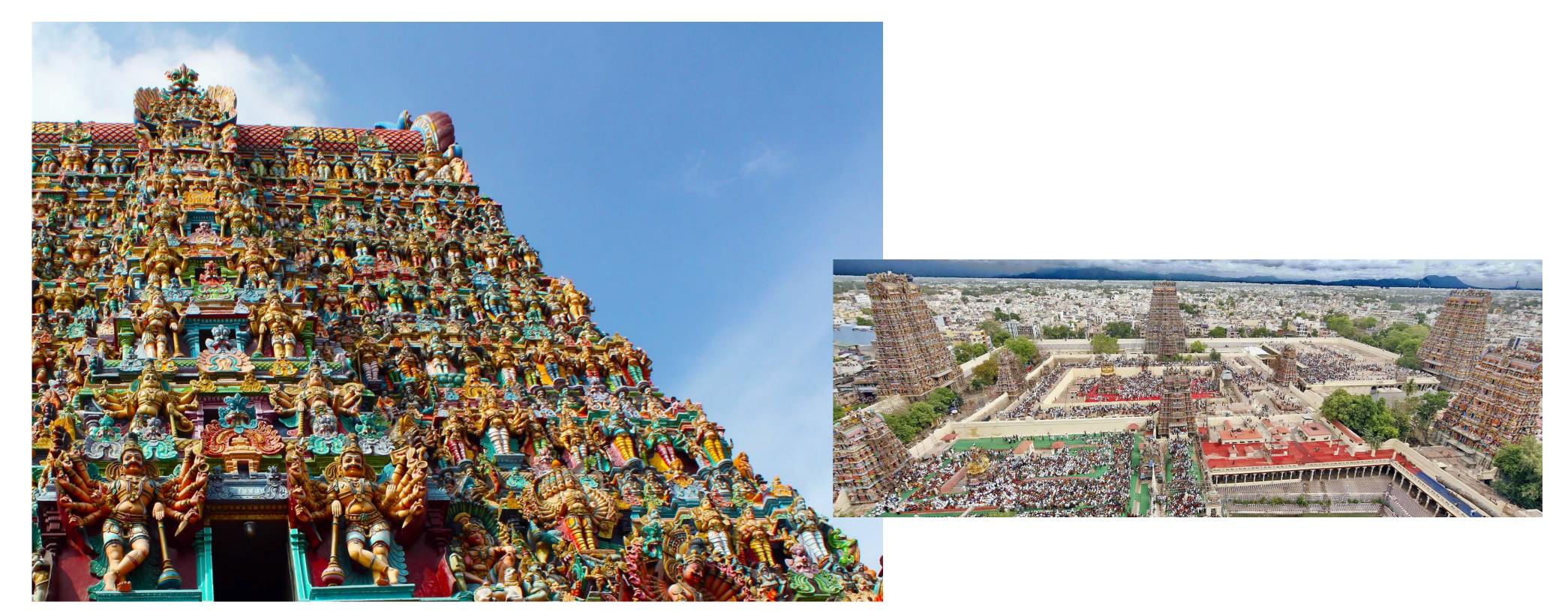


Geometry: Examples



Geometry: Examples

Geometry: Examples



Geometry: Examples

Keenan Crane

This Master is run under the context of Action No 2020-EU-IA-0087, co-financed by the EU CEF Telecom under GA nr. INEA/CEF/ICT/A2020/2267423

MA 4 CAREU

Master programmes in Artificial Intelligence 4 Careers in Europe

Today's Agenda

- Who are we?
- What is 3D Vision
- Geometry
- 3D shape representations
- 3D shape datasets
- 3D Deep Learning architectures
- What we do

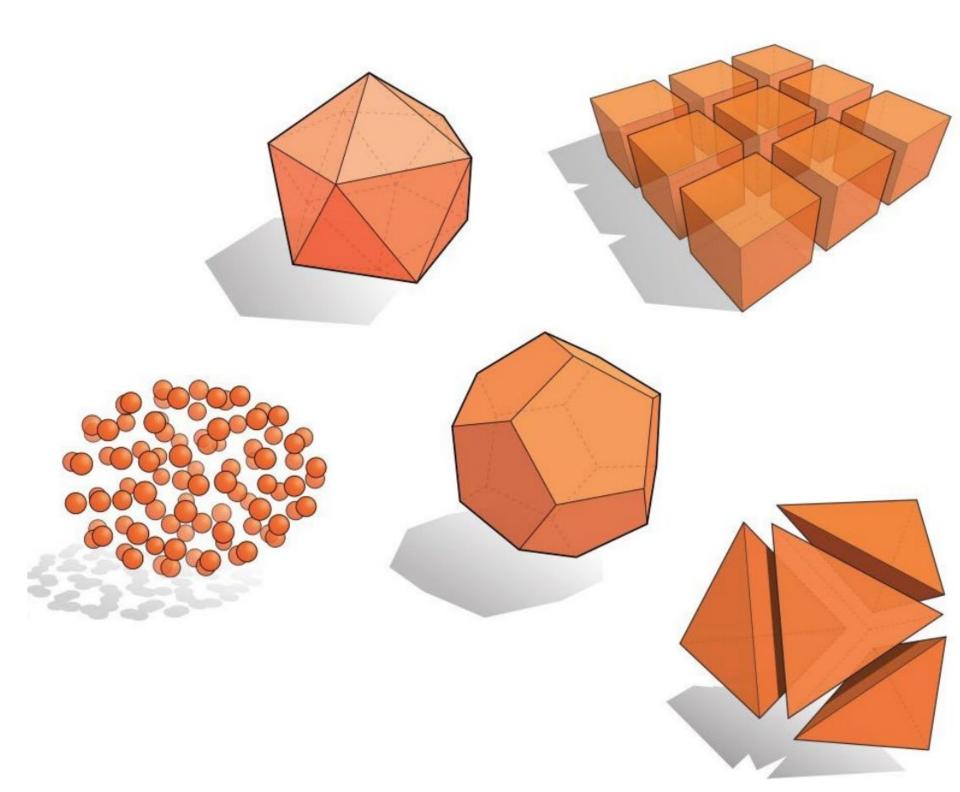
3D shape representations: Many ways to represent geometry

Explicit

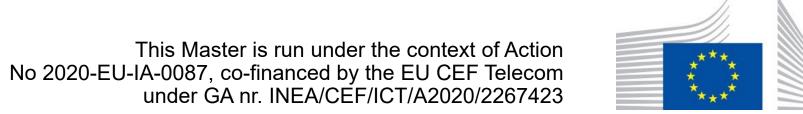
- point cloud
- polygon mesh
- •

Implicit

- level sets
- distance functions
- •
- Voxels

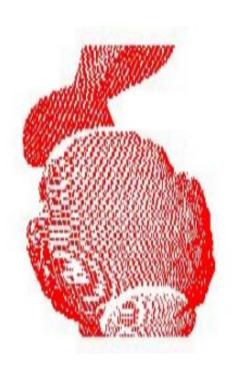


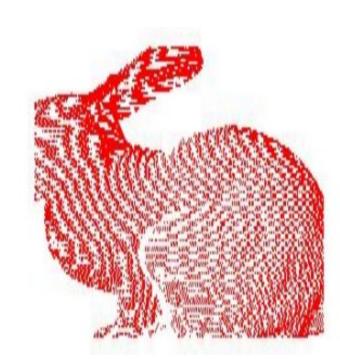
Jiajun Wu

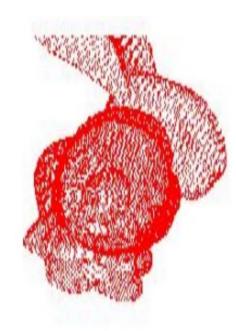


3D shape representations: Point clouds

 Simplest representation: only points, no connectivity



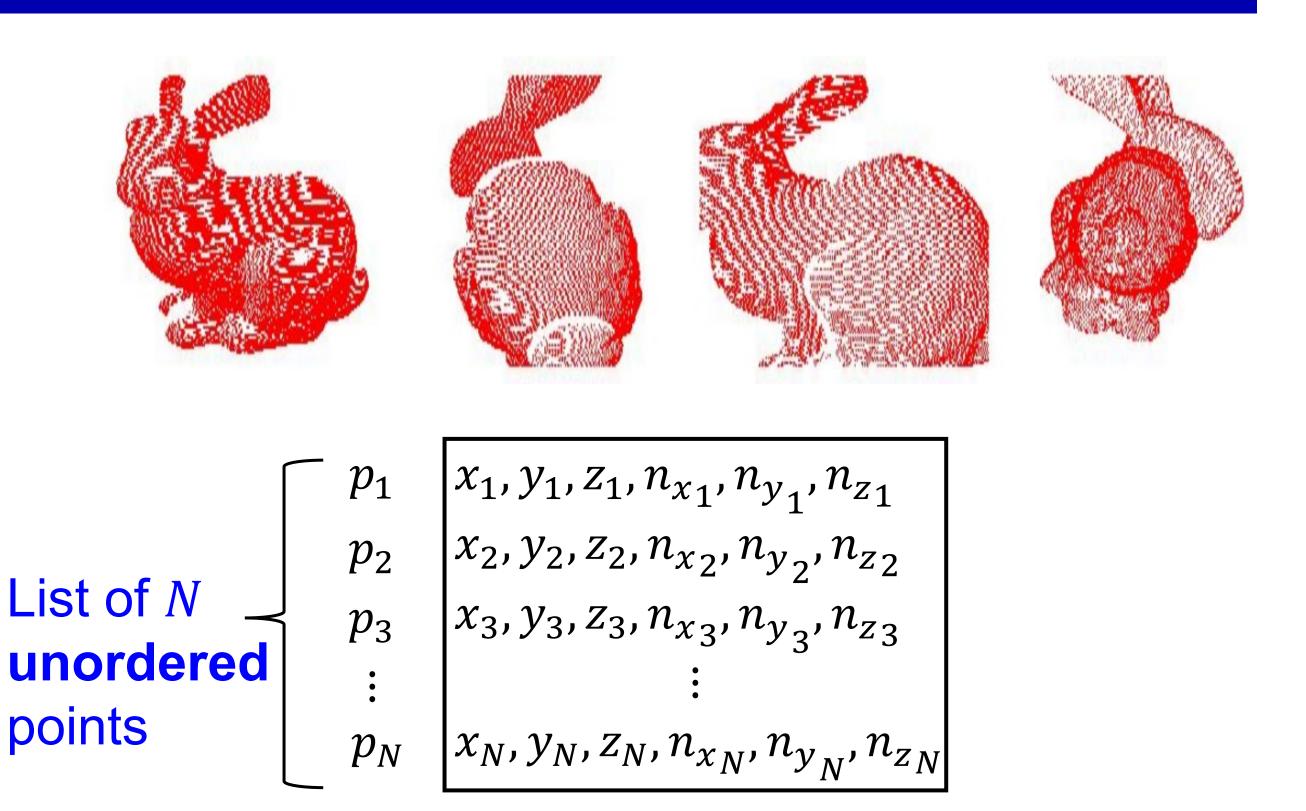




29

3D shape representations: Point clouds

- Simplest representation: only points, no connectivity
- Collection of (x, y, z)coordinates, possibly with normal (perpendicular to the underlying surface)

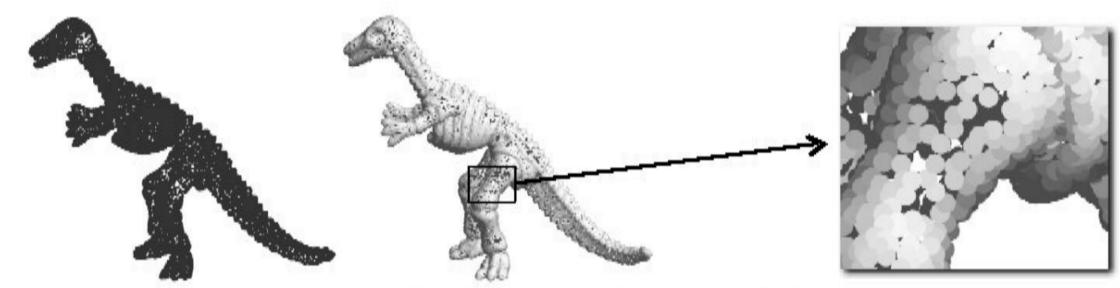


Jiajun Wu

3D shape representations: Point clouds

- Simplest representation: only points, no connectivity
- Collection of (x, y, z)
 coordinates, possibly with
 normal (perpendicular to the
 underlying surface)
- Points with orientation (normal) are called surfels

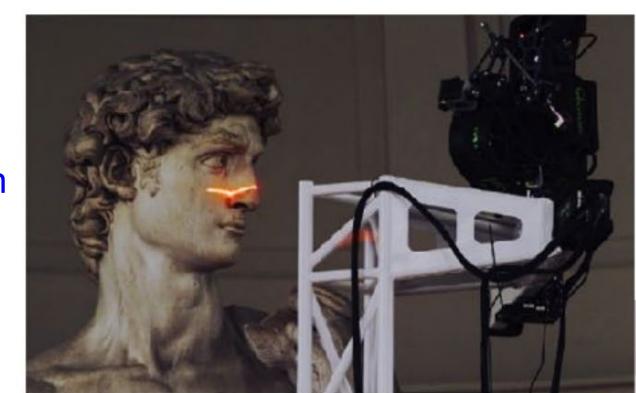


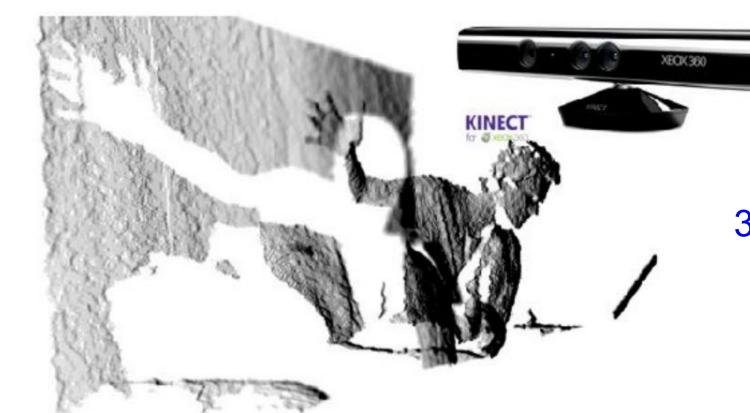


Jiajun Wu

3D shape representations: Point clouds acquisition

Laser triangulation rangefinder





3D Depth sensor

3D Laser scanner

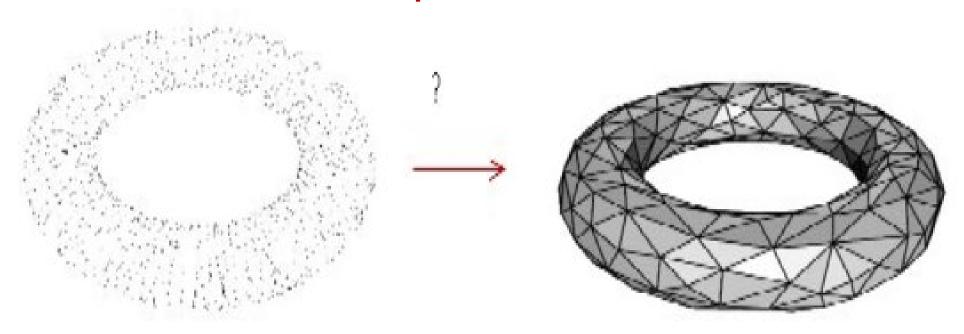
32

MAI4CAREU

3D shape representations: Point clouds pros & cons

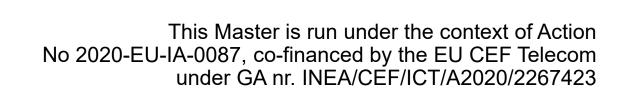
- Pros:
 - Easily represents any kind of geometry
 - ✓ Useful for large datasets
- Cons
 - Incomplete/noisy point clouds
 - x No topological information

Incomplete scans



No topology

Jiajun Wu

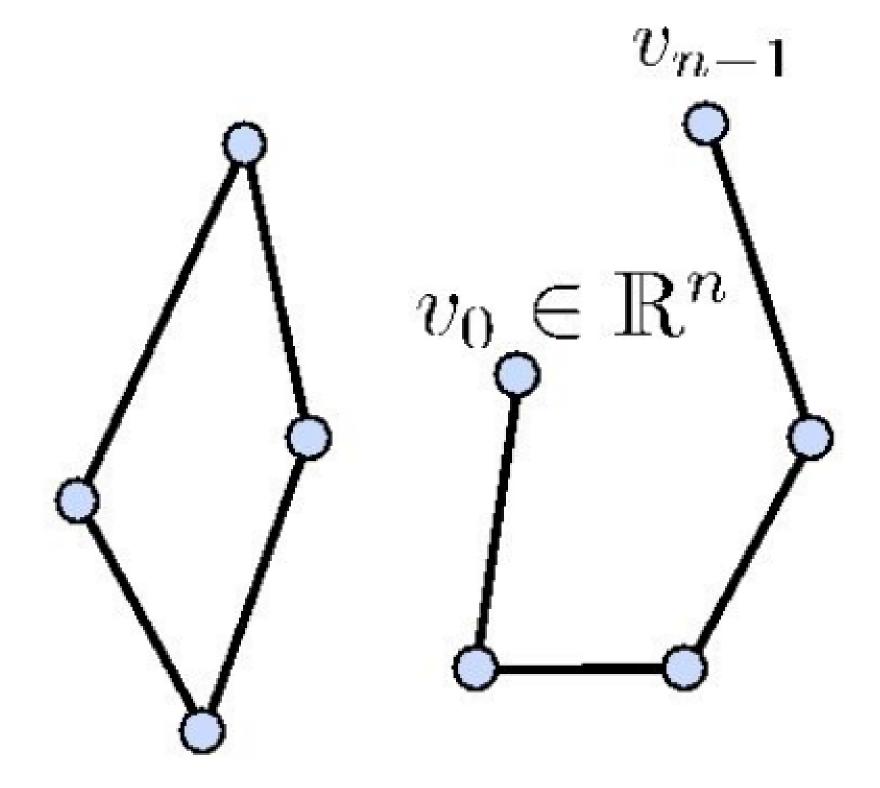


3D shape representations: Polygonal Meshes

- A 3D polygonal mesh is the structural build of a 3D model consisting of polygons
- Boundary representation of objects

3D shape representations: Polygonal Meshes

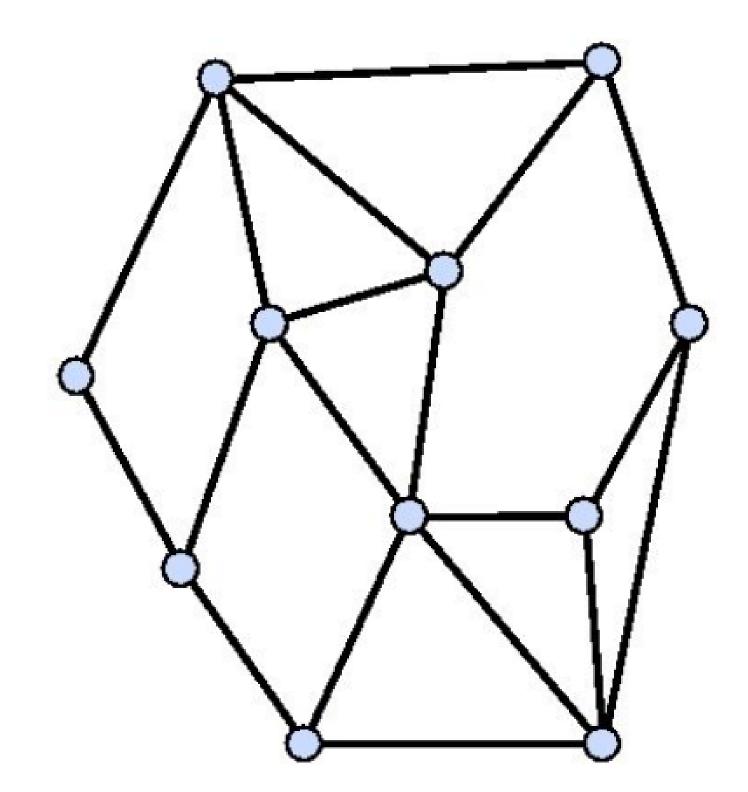
- Polygon:
 - Vertices: v_0, v_1, \dots, v_{n-1}
 - Edges: $\{(v_0, v_1), \dots, (v_{n-2}, v_{n-1})\}$
- Types of polygons:
 - Closed: $v_0 = v_{n-1}$
 - Planar: all vertices on a plane
 - Simple: not self-intersecting



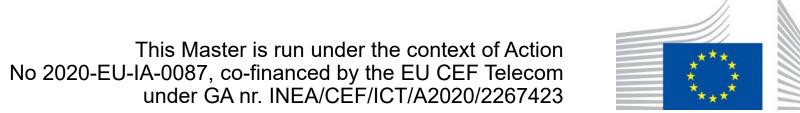
3D shape representations: Polygonal Meshes

- Polygonal Mesh:
 - A finite set M of closed, simple polygons Q_i

$$M = \langle V, E, F \rangle$$
 $V = \text{set of vertices}$
 $E = \text{set of edges}$
 $F = \text{set of faces}$



Jiajun Wu

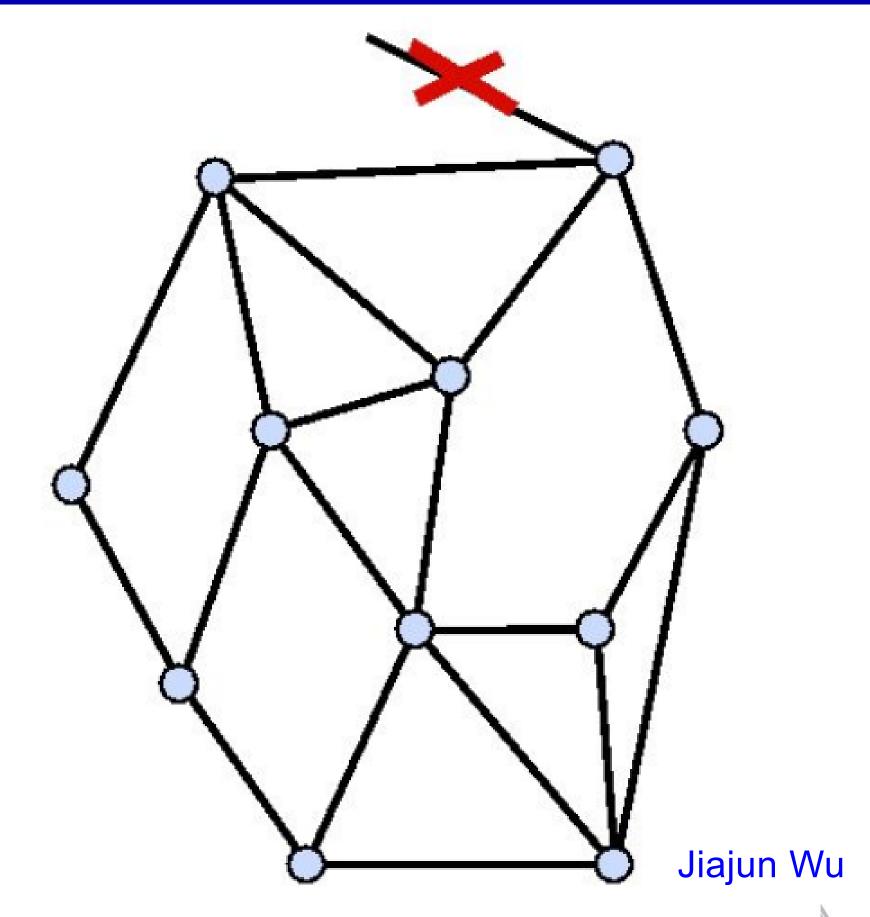


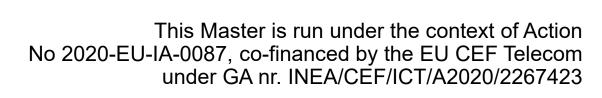
36

MAI4CAREU

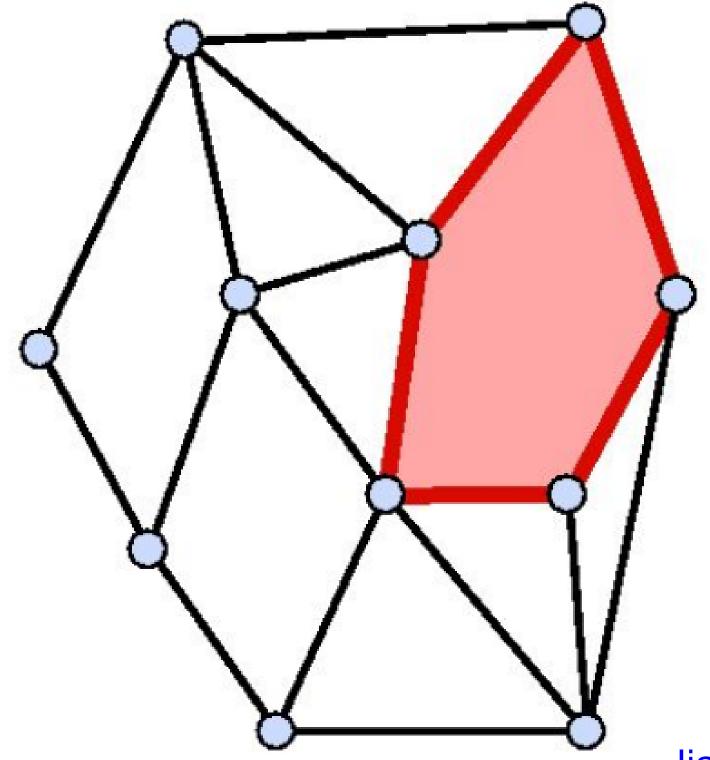
3D shape representations: Polygonal Meshes

- Polygonal Mesh:
 - A finite set M of closed, simple polygons Q_i
 - Every edge belongs to at least one polygon

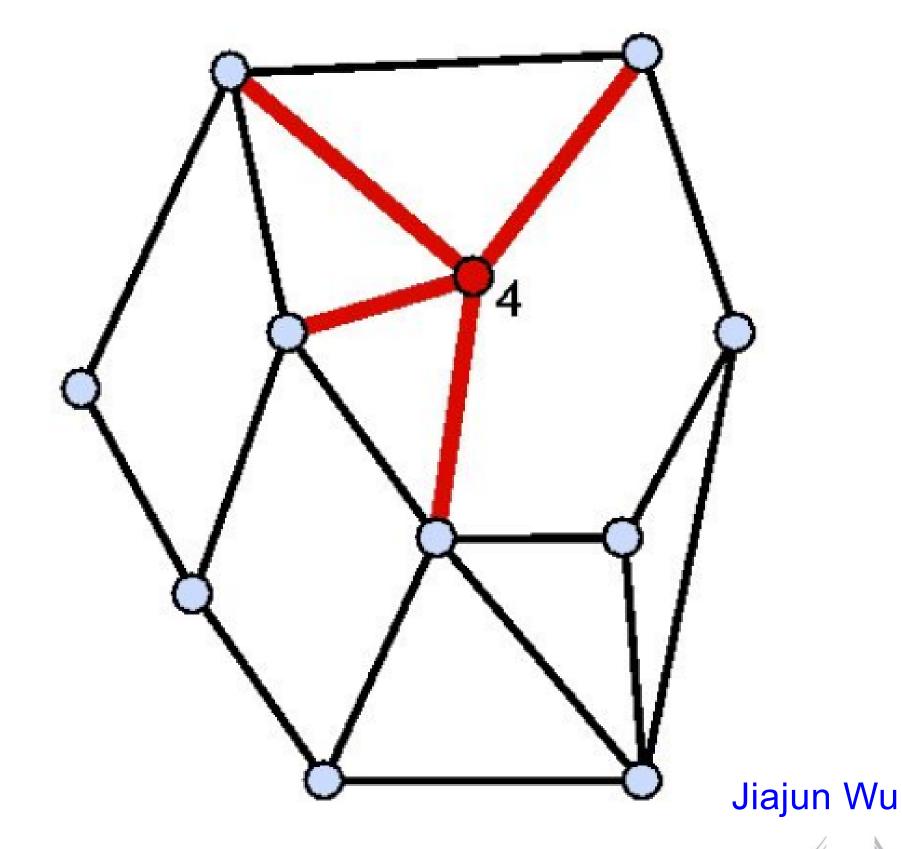


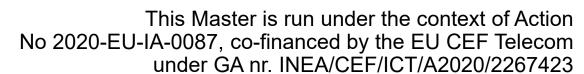


- Polygonal Mesh:
 - A finite set M of closed, simple polygons Q_i
 - Every edge belongs to at least one polygon
 - Each Q_i defines a **face** of the polygonal mesh

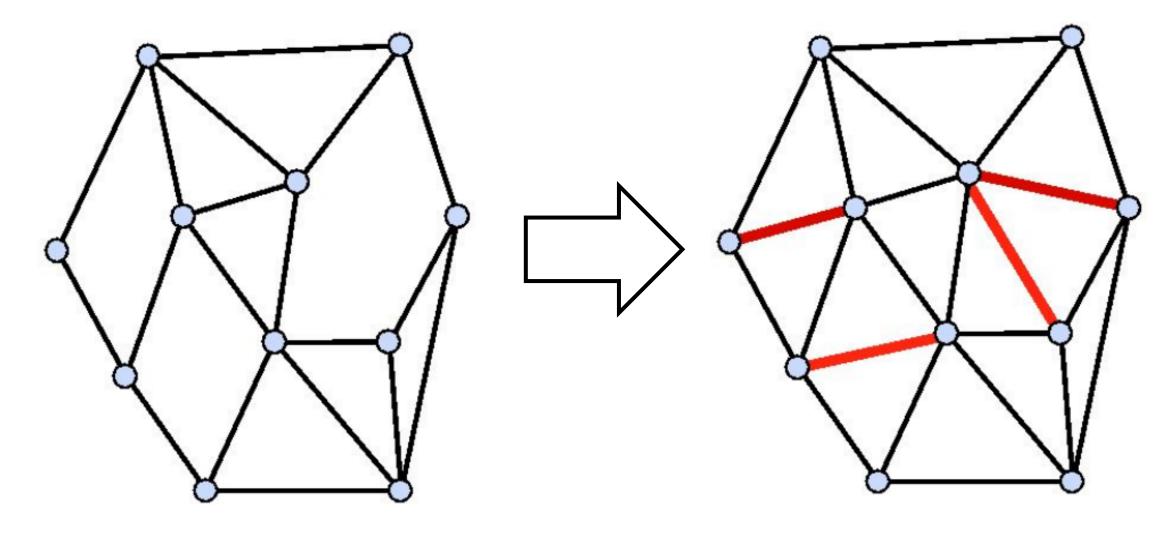


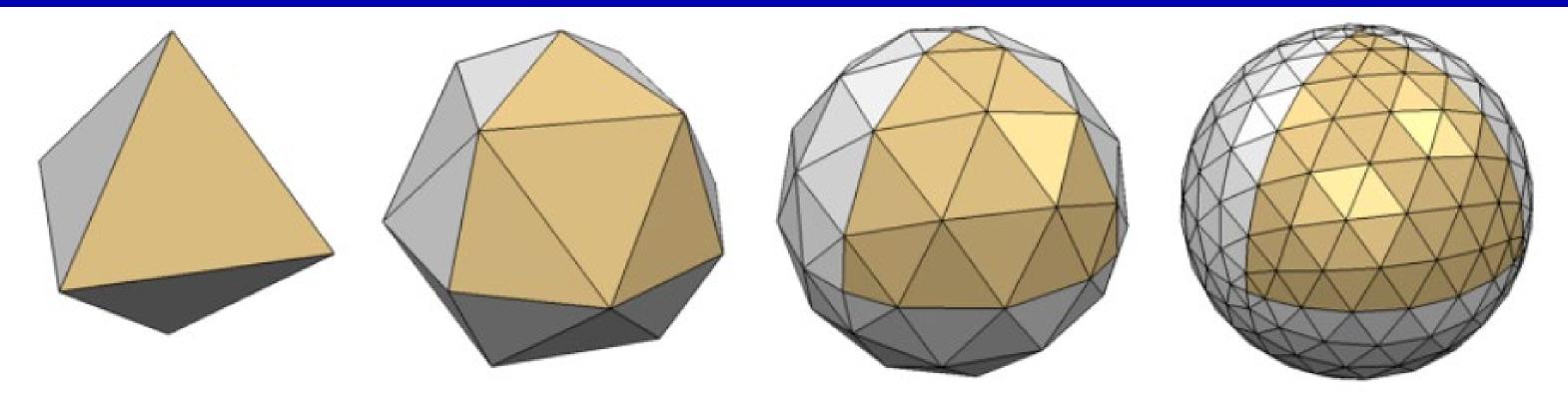
- Polygonal Mesh:
 - A finite set M of closed, simple polygons Q_i
 - Every edge belongs to at least one polygon
 - Each Q_i defines a **face** of the polygonal mesh
 - Vertex degree or valance = number of incident edges





- Polygonal Mesh Triangulation:
 - Polygonal mesh where every face is a triangle → triangular mesh
 - Simplifies data structures
 - Simplifies rendering
 - Simplifies algorithms
 - Each face is planar and convex
 - Any polygon can be triangulated





- A polygonal mesh consists of three kinds of mesh elements: vertices, edges and faces
- Mesh connectivity or topology: describes the incidence relation amongst mesh elements
- Mesh geometry: specifies the position and other geometric characteristics of each vertex

- Data Structures:
 - What should be stored?
 - Geometry: 3D coordinates
 - Connectivity: Adjacency relationships
 - Attributes:
 - Normal, color, texture coordinates
 - Per vertex, face, edge

3D shape representations: Polygonal Meshes

- Indexed Face Set
 - Used in formats like OBJ and OFF
 - Storage
 - Vertex: position
 - Face: vertex indices
 - No explicit neighborhood info

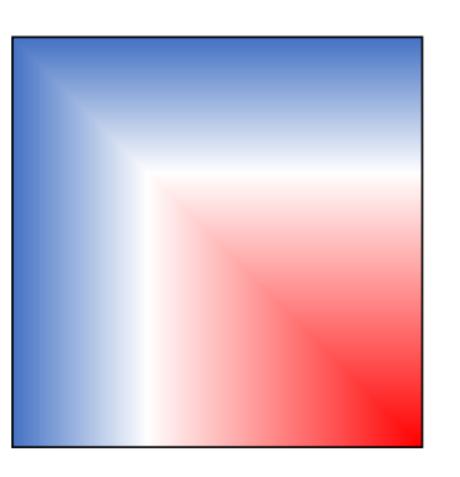
Vertices				
v0	хO	ΛO	z0	
v1	x1	x1	z1	
v2	x2	у2	z2	
v3	хЗ	уЗ	z3	
v4	x4	у4	z4	
v5	x5	у5	z5	
v6	x6	У6	z6	
• • •	• • •	•••	•••	

Triangles				
t0	v0	v1	v2	
t1	v0	v1	v3	
t2	v2	v4	v3	
t3	v5	v2	v6	
			• • •	

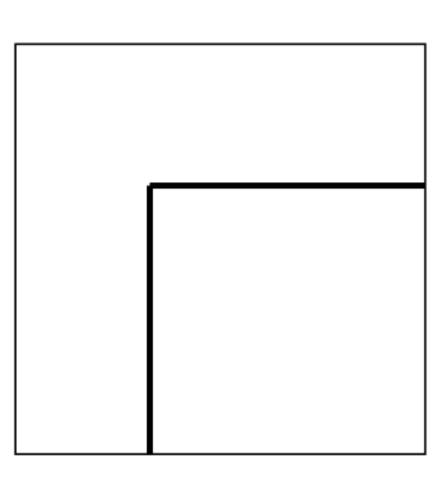
Jiajun Wu

3D shape representations: Implicit Functions

- Implicit function
 - Classifies arbitrary 3D points as inside / outside the shape

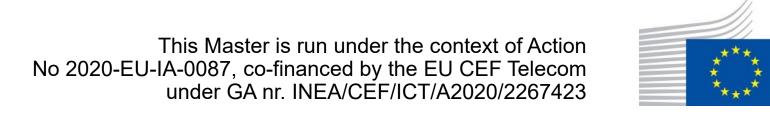


Implicit function



Explicit Shape

Justin Solomon



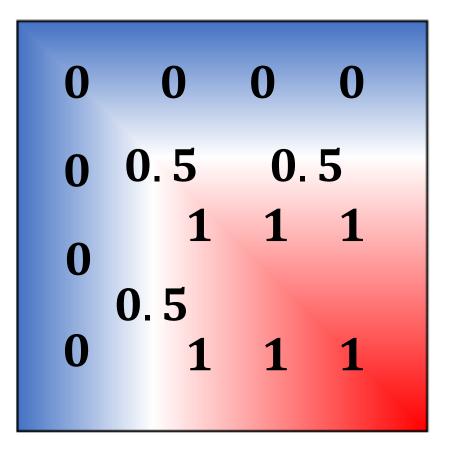
3D shape representations: Implicit Functions

- Implicit function
 - Classifies arbitrary 3D points as inside / outside the shape
 - Occupancy function:

$$o: \mathbb{R}^3 \to \{0,1\}$$

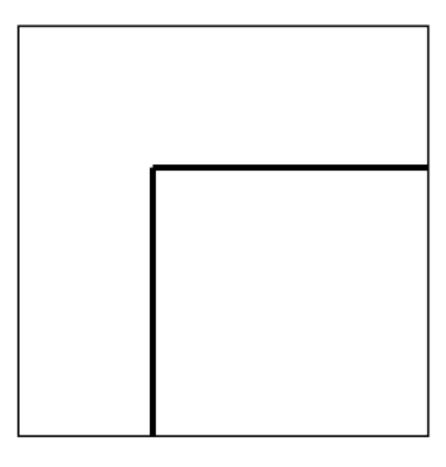
• The surface of the 3D object is the level set:

$$\{x: \mathbf{o}(x) = \frac{1}{2}\}$$



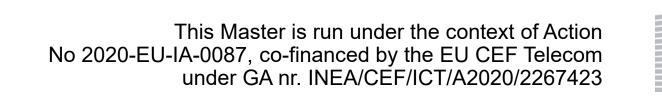
Implicit function

44



Explicit Shape

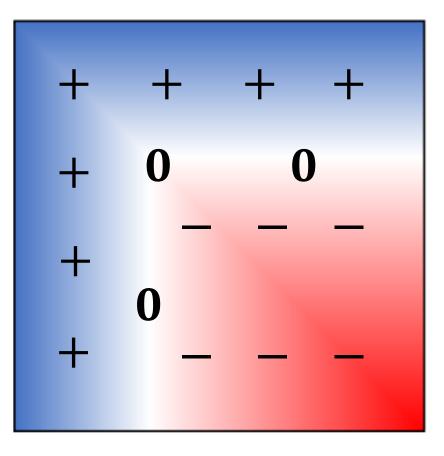
Justin Solomon



3D shape representations: Implicit Functions

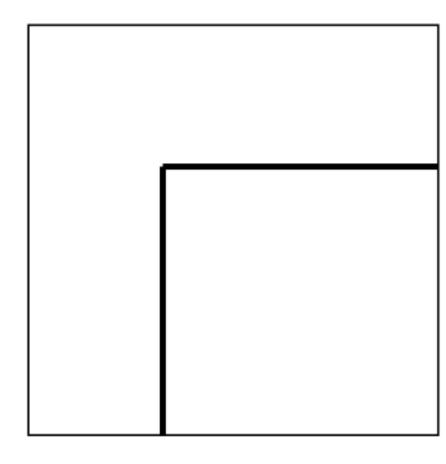
- Implicit function
 - Classifies arbitrary 3D points as inside / outside the shape
 - Signed Distance Function:
 Euclidean distance to the surface of shape; sign gives inside / outside
 - The surface of the 3D object is the level set:

$$\{x: SDF(x) = 0\}$$



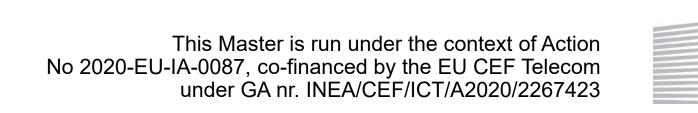
Implicit function

45



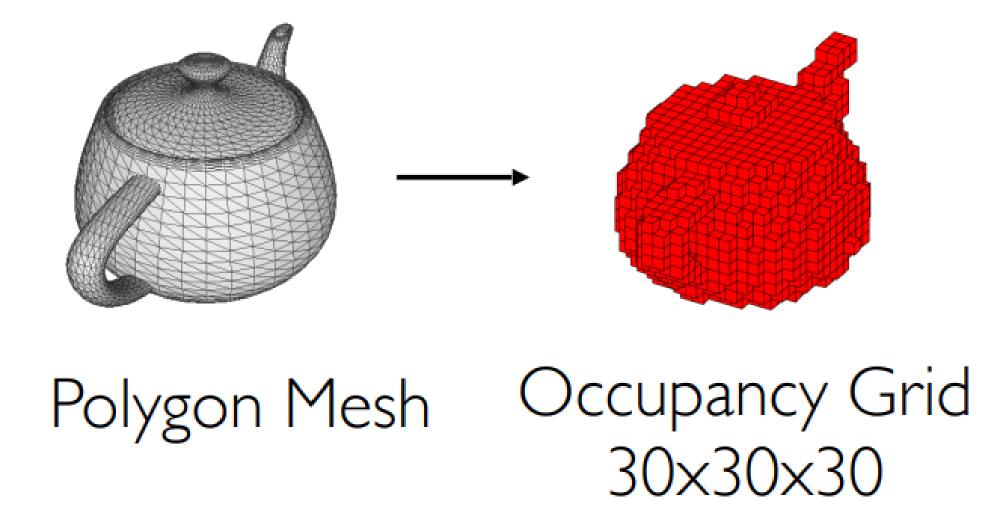
Explicit Shape

Justin Solomon

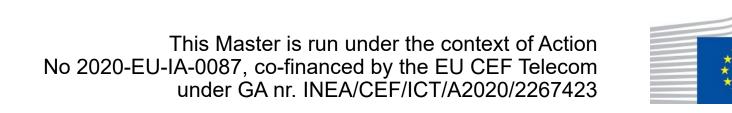


3D shape representations: Volumetric Grid

- Volumetric Grid
 - Represent a shape with a V × V × V grid of occupancies or SDFs
 - Conceptually simple → just a 3D regular Euclidean grid
 - Like an image
 - Pixels -> Voxels
 - Straightforward to apply 3D convolutions



Hao Su et al.



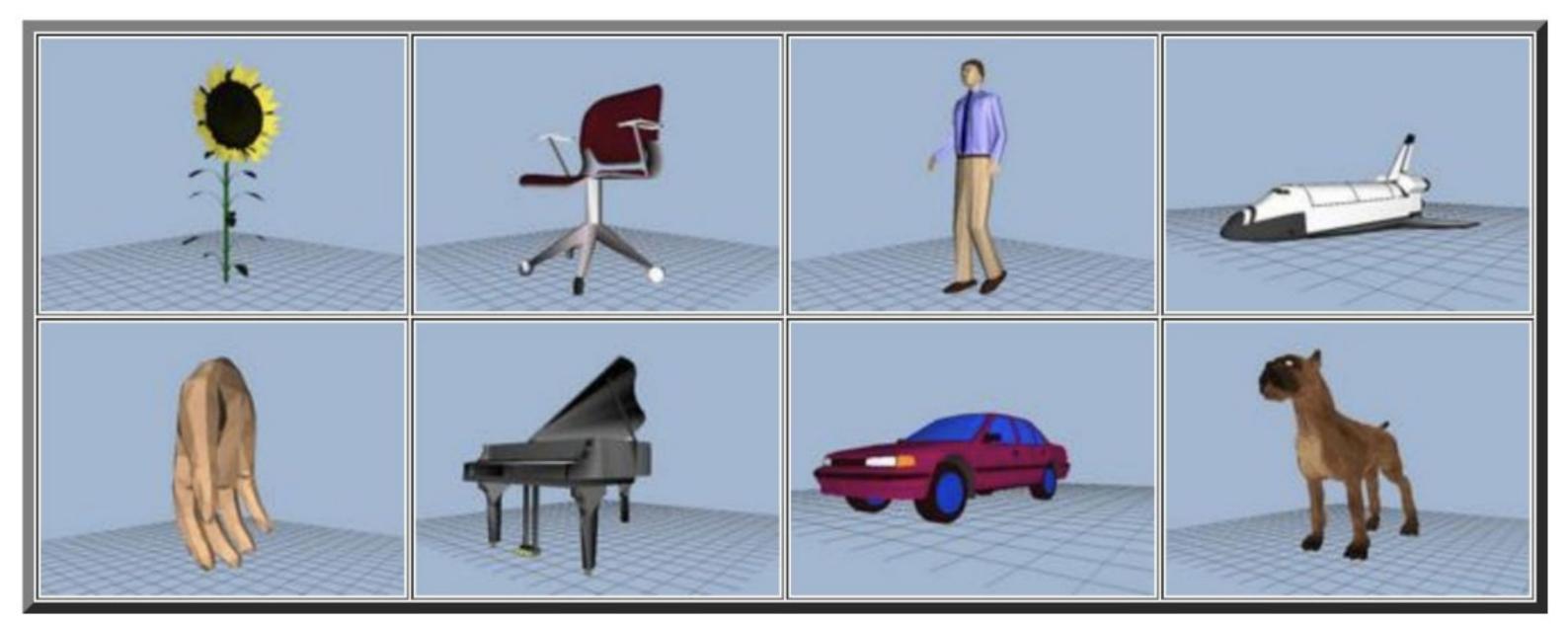
Master programmes in Artificial Intelligence 4 Careers in Europe

Today's Agenda

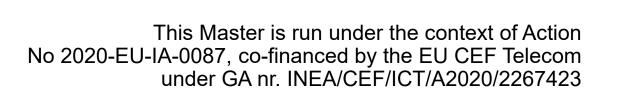
- Who are we?
- What is 3D Vision
- Geometry
- 3D shape representations
- 3D shape datasets
- 3D Deep Learning architectures
- What we do

3D shape datasets: Datasets for 3D Objects

- Princeton Shape Benchmark
 - # Models: 1,814
 - # Categories: 182



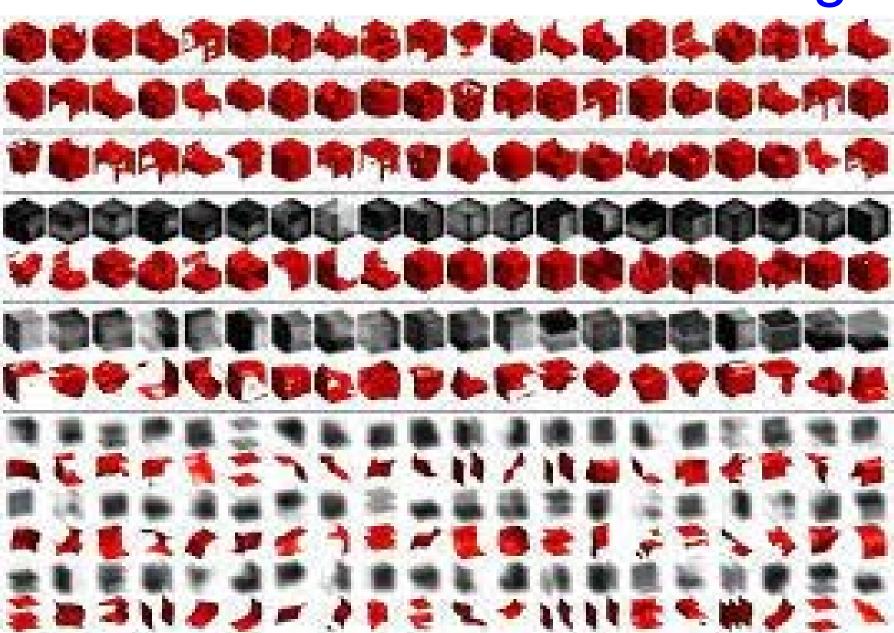
Shilane et al., 2004



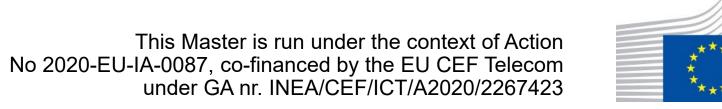
3D shape datasets: Datasets for 3D Objects

- ModelNet40 and ModelNet40
 - # Models: 12,311
 - # Categories: 40

- ModelNet10 (subset of ModelNet10)
 - # Models: 4,899
 - # Categories: 10



Z. Wu et al., 2015



3D shape datasets: Datasets for 3D Objects

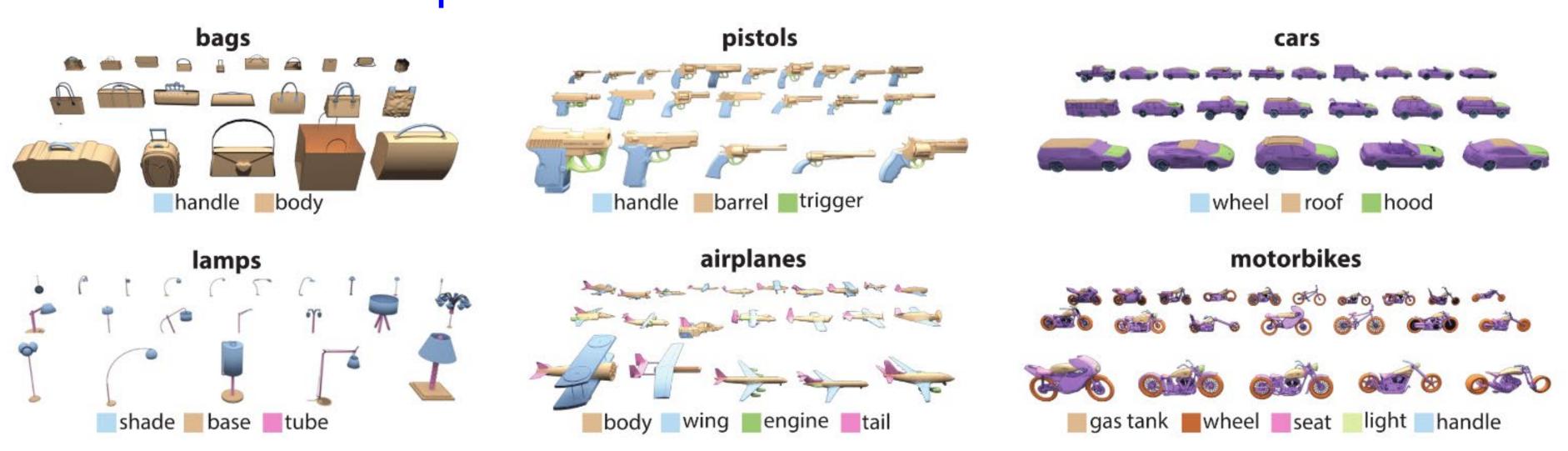
- ShapeNet
 - # Models: 3M (not publicly available)

- ShapeNetCore (subset of ShapeNet)
 - # Models: 51,300
 - # Categories: 55

Change et al., 2015

3D shape datasets: Datasets for 3D Objects Parts

- ShapeNet-Part (subset of ShapeNet)
 - # Models: 16,881
 - # Categories: 16
 - # Semantic parts: 50



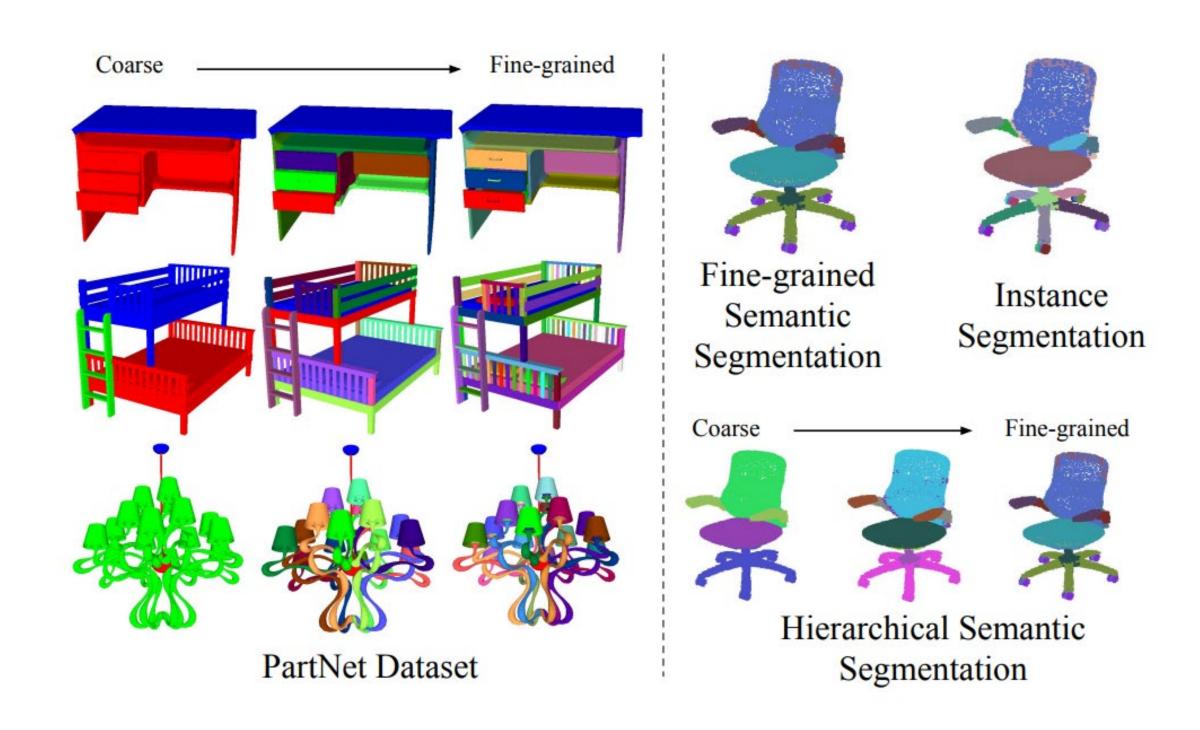
Yi et al., 2016

52

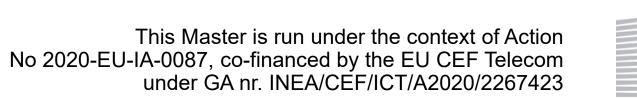
MAI4CAREU

3D shape datasets: Datasets for 3D Objects Parts

- PartNet (subset of ShapeNet)
 - # Models: 26,671
 - # Categories: 24
 - # Part instances: 573,585
 - # Semantic parts: 480
 - Fine-grained
 - Hierarchical



Mo et al., 2019

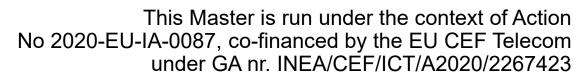


3D shape datasets: Datasets for 3D Objects

- Pix3D
 - # Images: 10,069
 - # Models: 395 (2D-3D aligned)

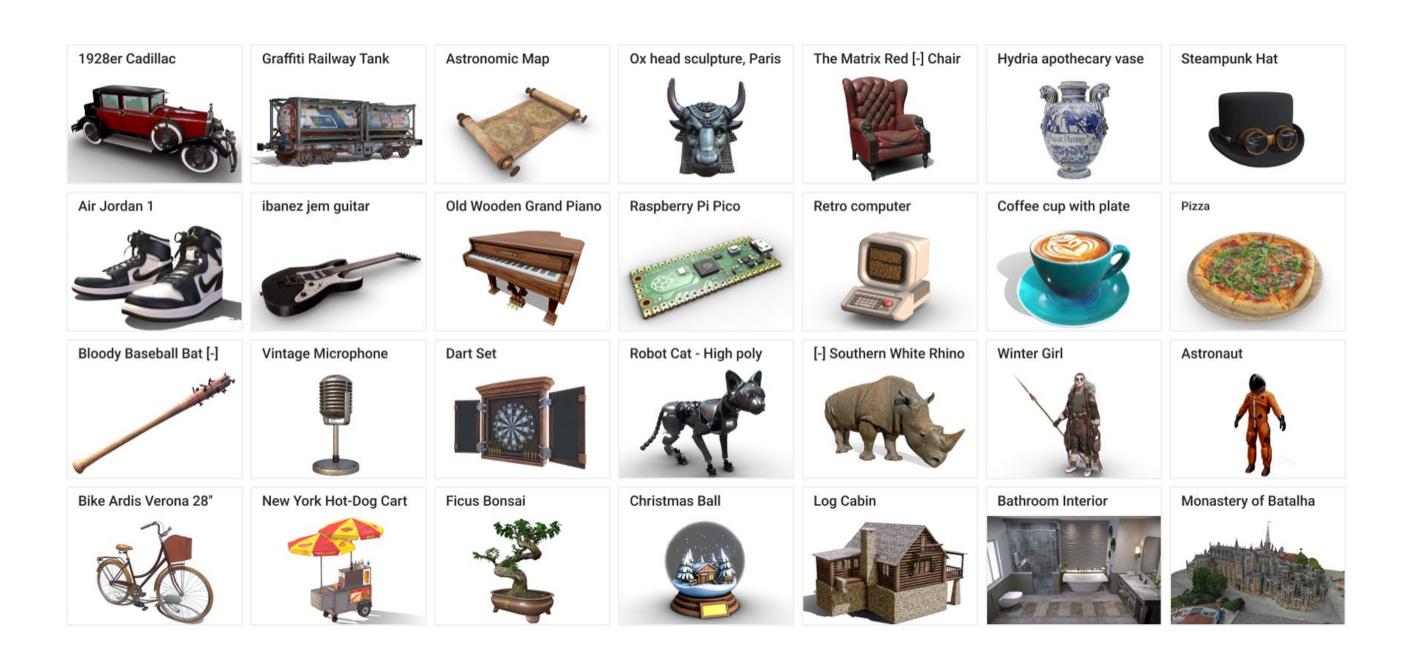
53

Sun et al., 2018



3D shape datasets: Datasets for 3D Objects

- Objaverse 1.0
 - # Models: 800,000+
 - # Categories: 21,000
 - Captions
 - Tags
 - Animations



3D shape datasets: Datasets for 3D Objects

- Objaverse-XL
 - # Models: 10M+
 - Captions
 - Tags
 - Animations
 - CLIP embeddings

Deitke et al., 2023

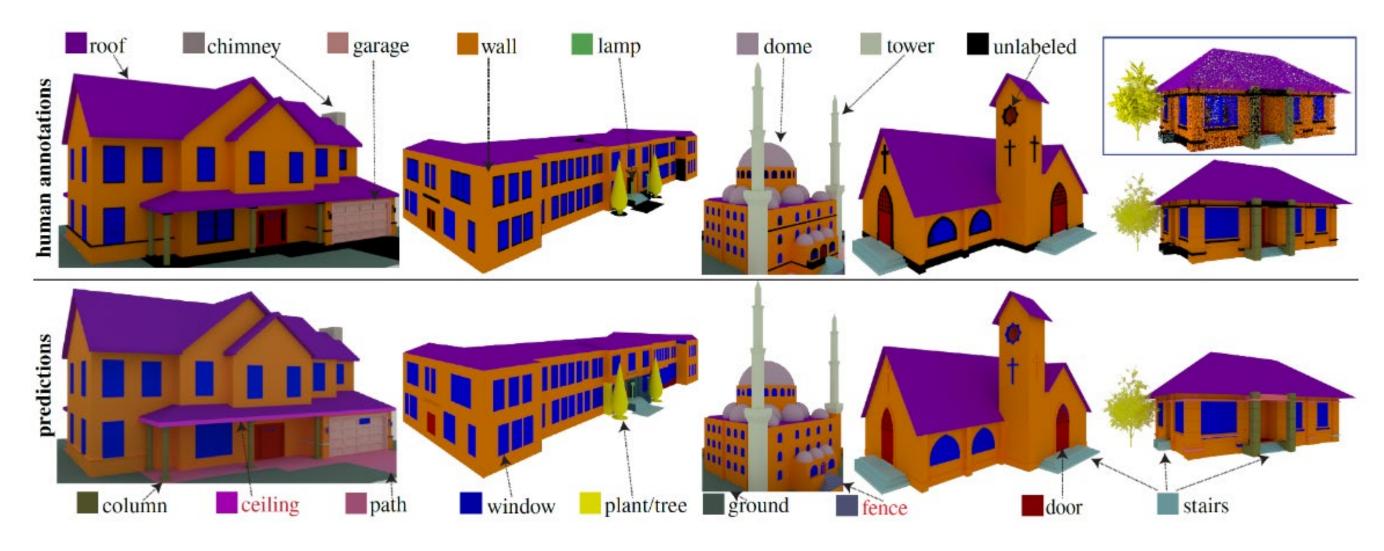
3D shape datasets: Datasets for Indoor 3D Scenes

- Large-scale Scanned Real Scenes: ScanNet
 - # Views: 2.5M
 - # RGBD scans: 1,500
 - 3D camera poses
 - Surface reconstruction
 - Instance-level semantic segmentations

Dai et al., 2017

3D shape datasets: Datasets for 3D Buildings

- BuildingNet
 - # Models: 2,000
 - # Semantic Components: 292K
 - # Semantic Parts: 31
 - Semantic segmentation
 - Surface reconstruction



Selvaraju et al., 2021

3D shape datasets: Datasets for Urban Areas

- SensatUrban
 - # Points: 3B
 - # Semantic Classes: 13

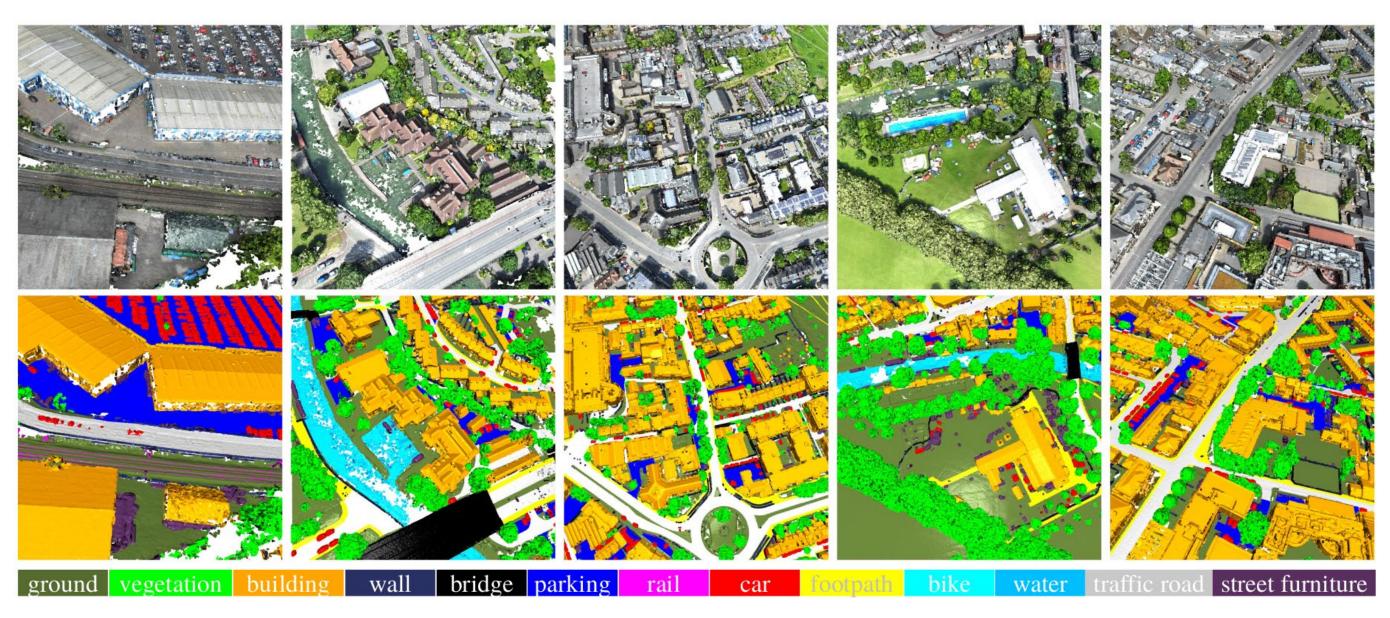
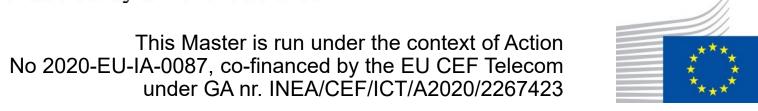


Figure 3: Examples of our SensatUrban dataset. Different semantic classes are labeled by different colors.



Qingyong et al., 2022

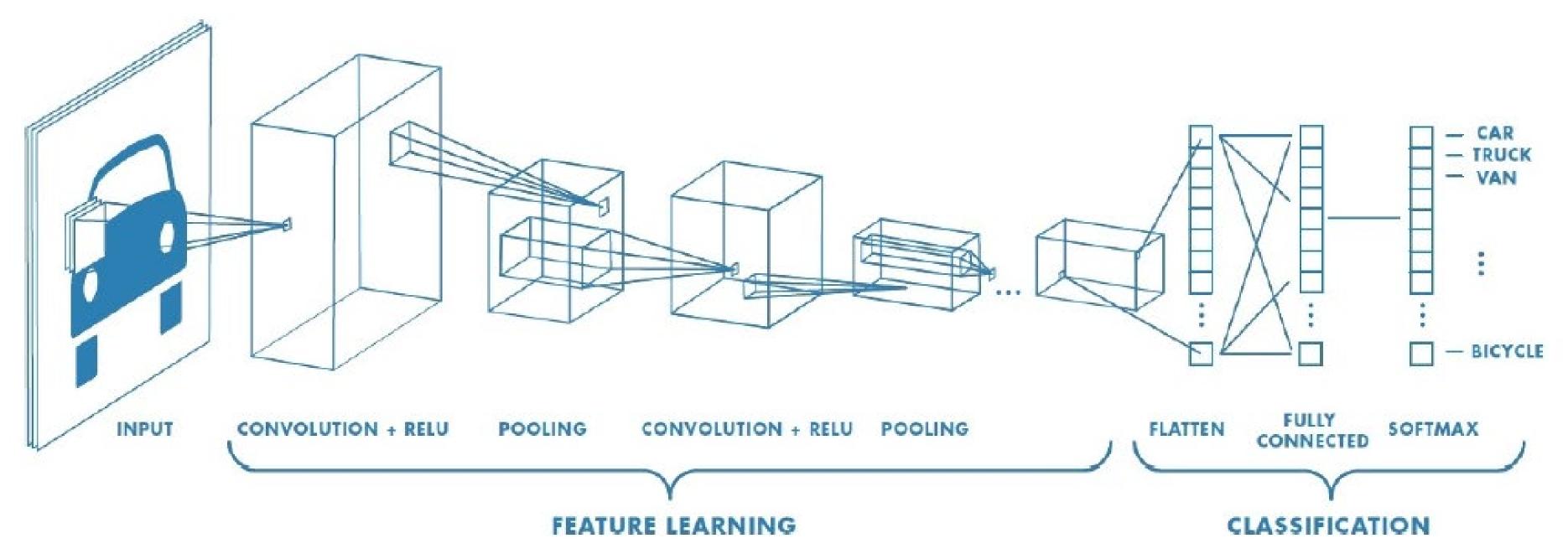
Master programmes in Artificial Intelligence 4 Careers in Europe

Today's Agenda

- Who are we?
- What is 3D Vision
- Geometry
- 3D shape representations
- 3D shape datasets
- 3D Deep Learning architectures
- What we do

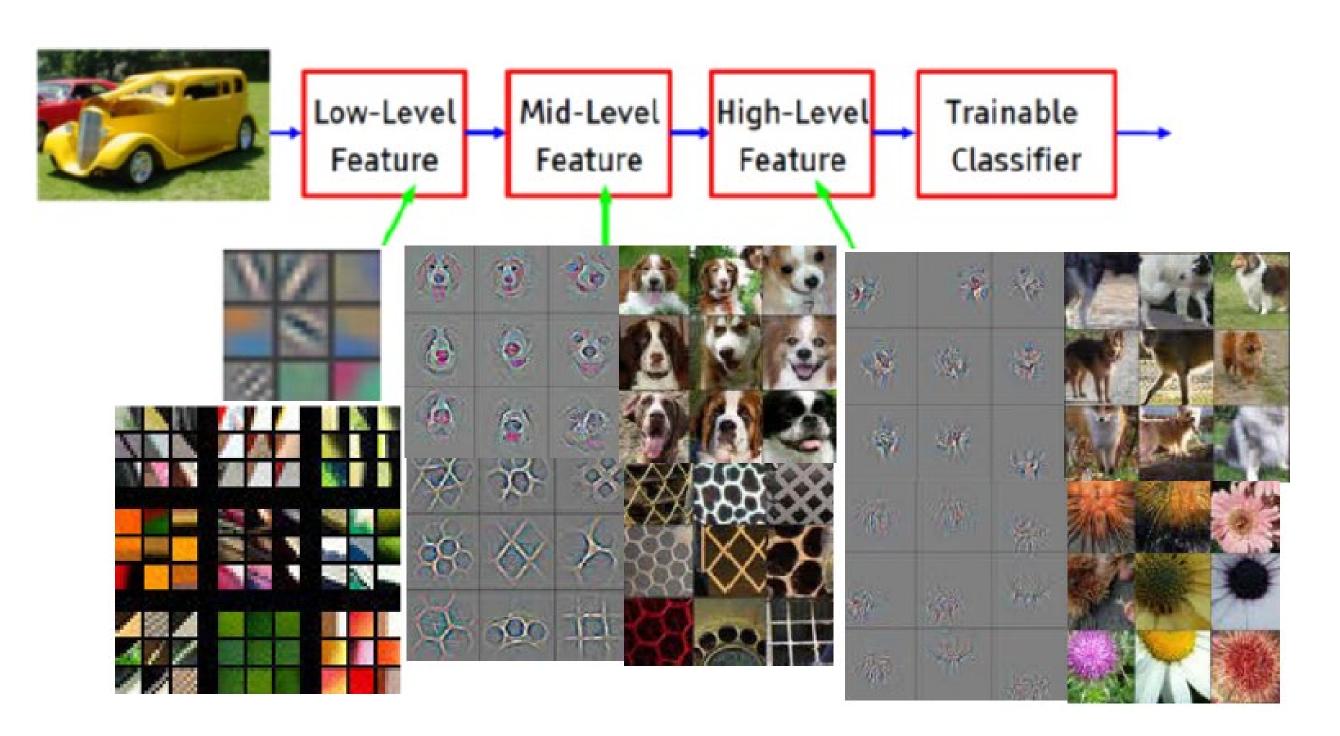
3D DL architectures: 2D architectures "success story"

Layers of **convolutional filters** trained to extract descriptors + **learned functions** that map descriptors to high-level concepts



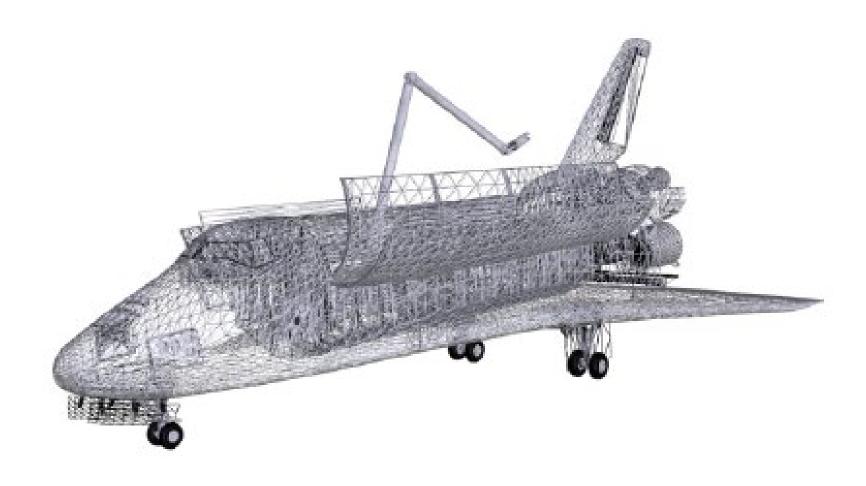
3D DL architectures: 2D architectures "success story"

Can capture various **low-level** and **high-level** features through hierarchical representation learning. **Very good performance** in 2D vision tasks (class., seg., obj. det....)



3D DL architectures: Challenges – How do we apply convnets in 3D shapes

Geometric representations are **irregular** and **unordered**: arbitrary point order, different #points, different #neighbor per point etc.

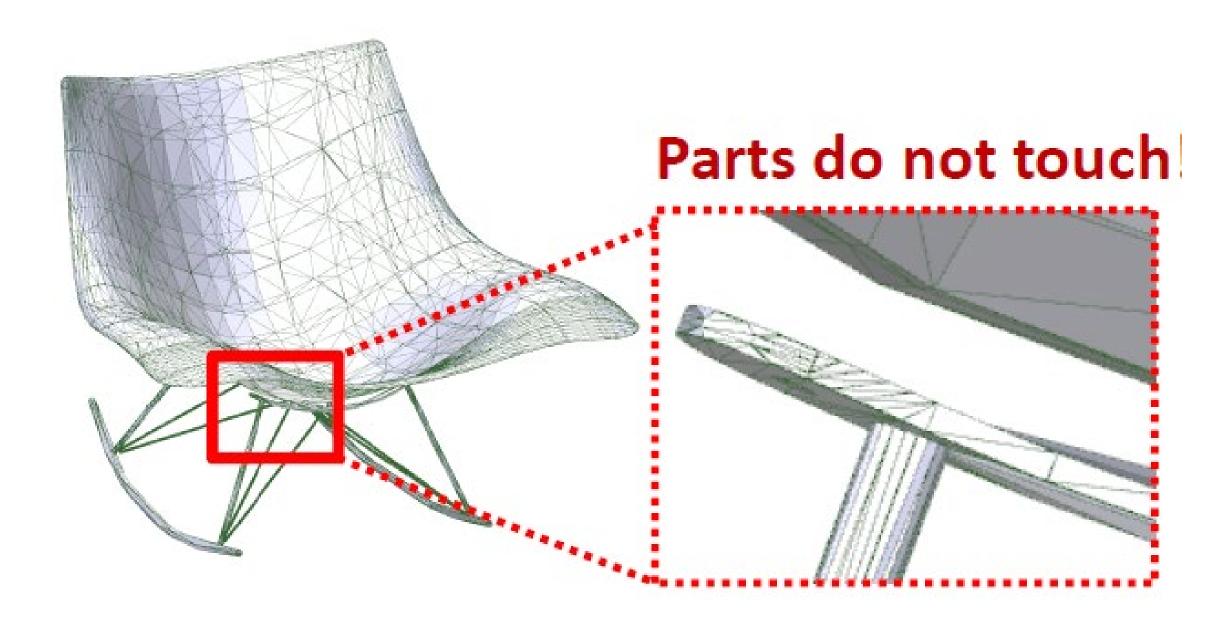


Polygon mesh

Point clouds

3D DL architectures: Challenges – Artifacts

3D models can have several artifacts



3D DL architectures: Challenges – Noise

Scanned surfaces have noisy and missing parts

Resulting surface

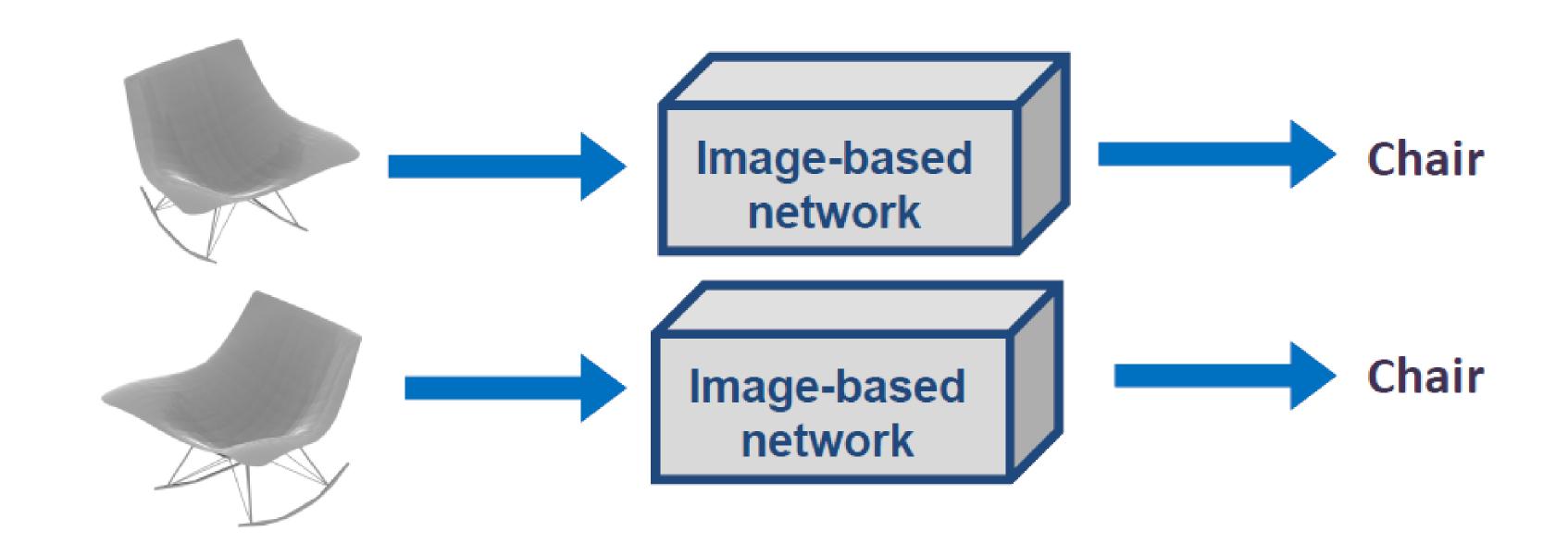
"A Large Dataset of **Object Scans**"

Choi, Zhou, Miller, Koltun 2016

I his iviaster is run under the context of Action under GA nr. INEA/CEF/ICT/A2020/2267423

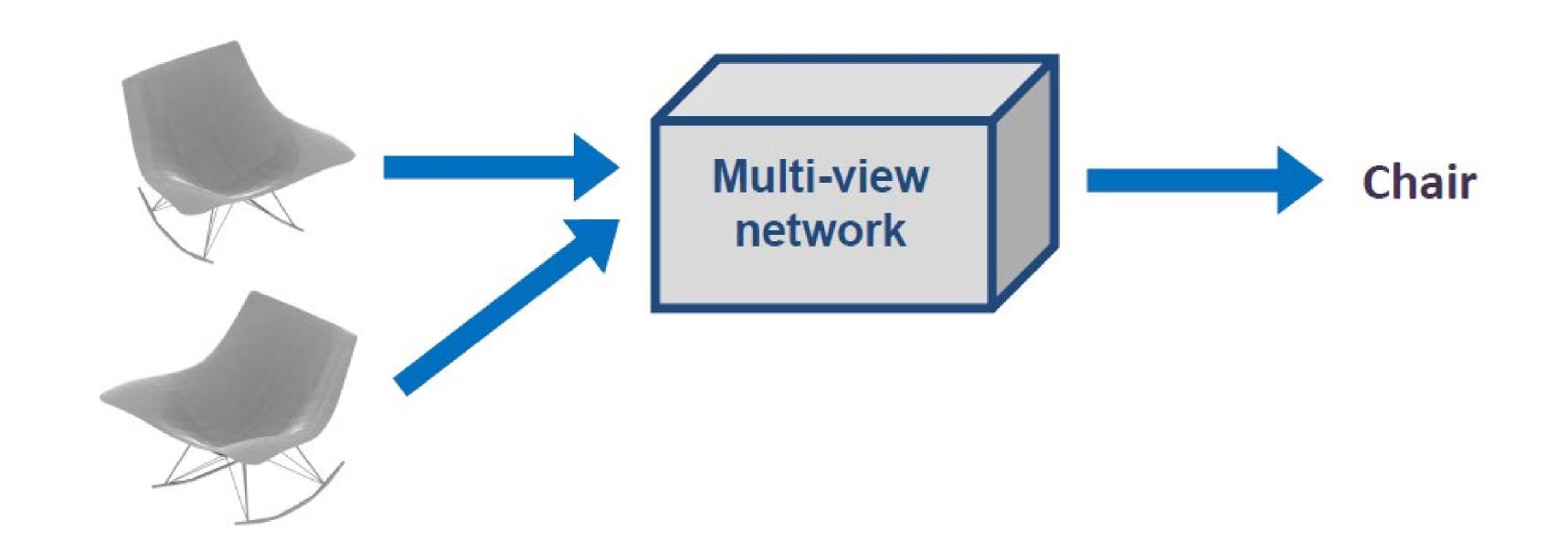
3D DL architectures: Multi-view approach

Image-based networks can process individual shape renderings

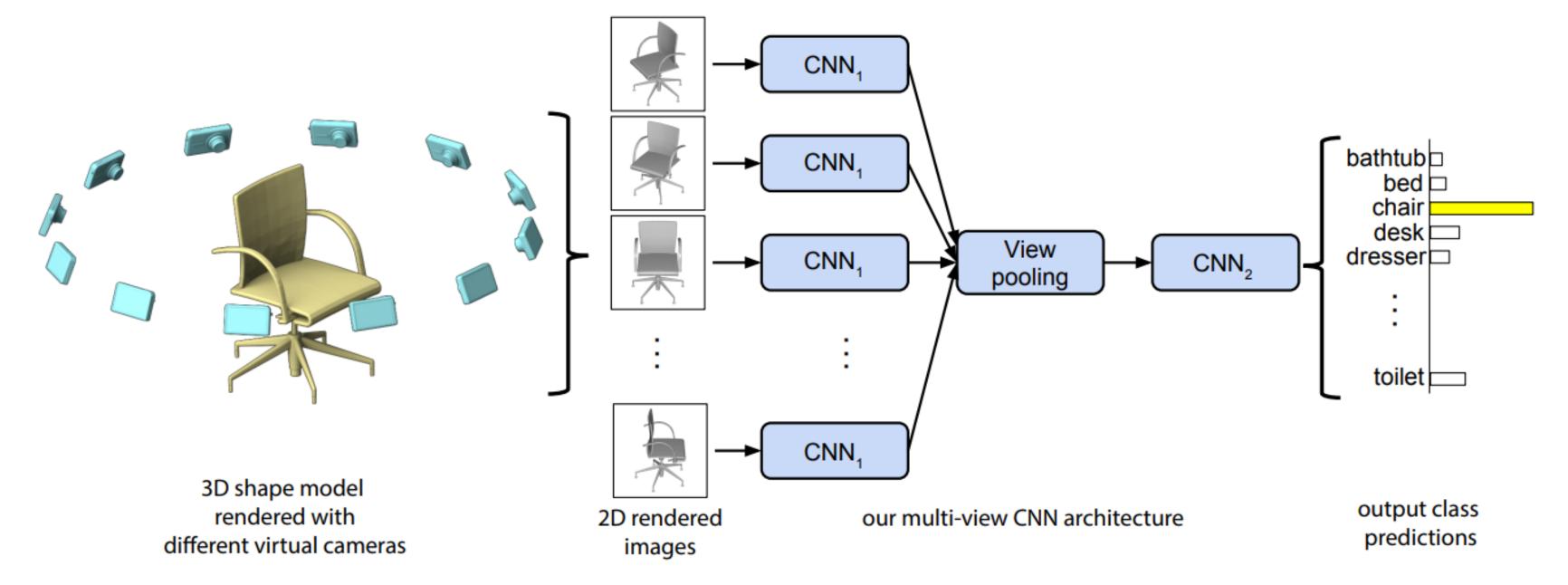


3D DL architectures: Multi-view approach

Image-based networks can process individual shape renderings

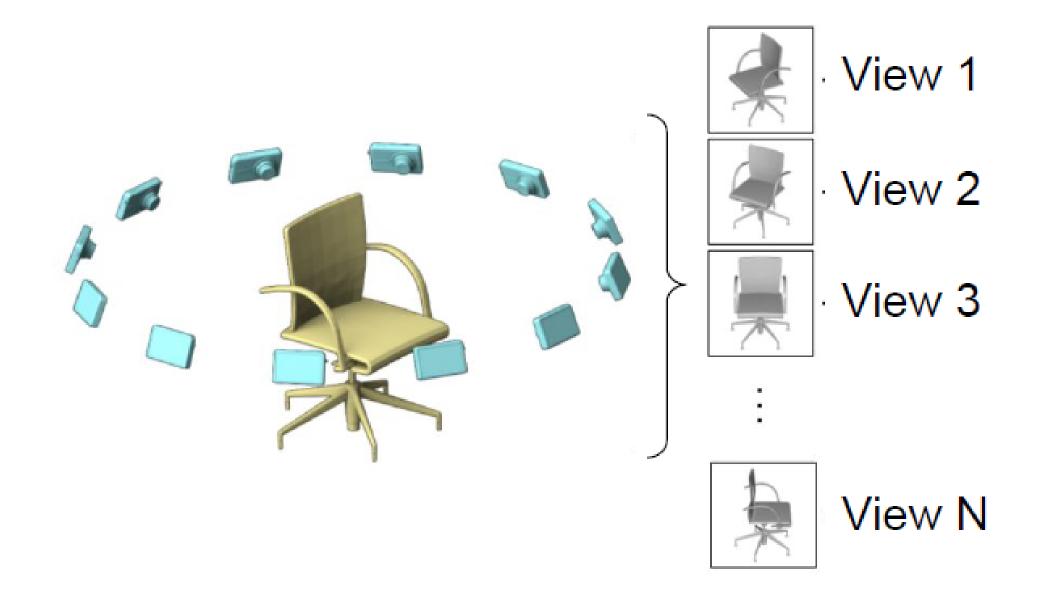


Multi-view Convolutional Neural Networks for 3D Shape Recognition

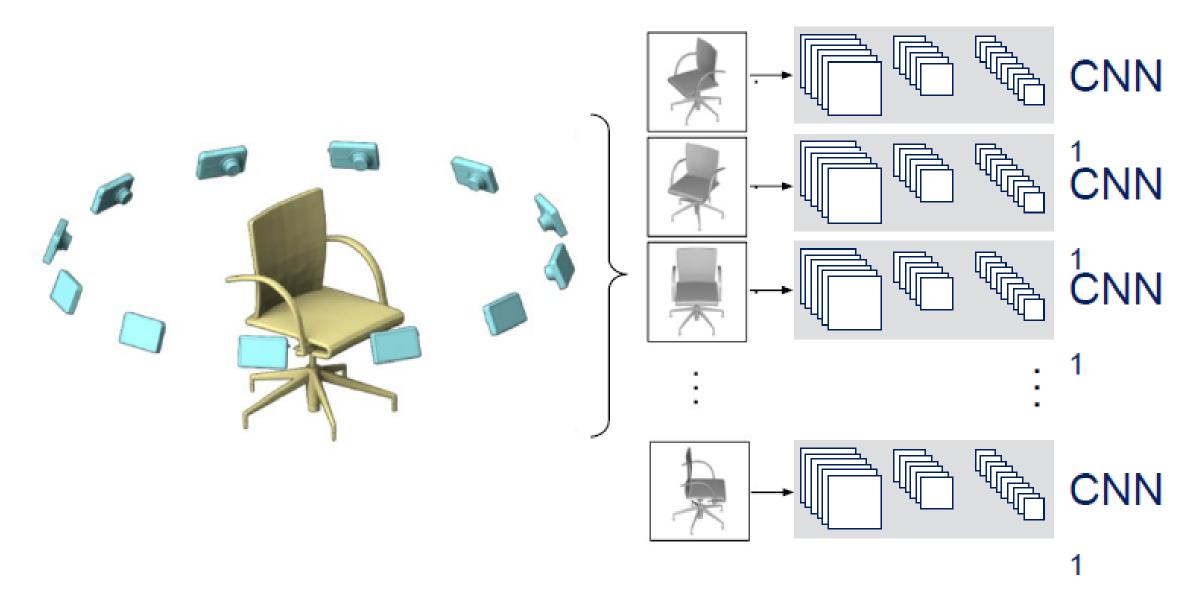


Multi-view Convolutional Neural Networks for 3D Shape Recognition

Multi-view Convolutional Neural Networks for 3D Shape Recognition

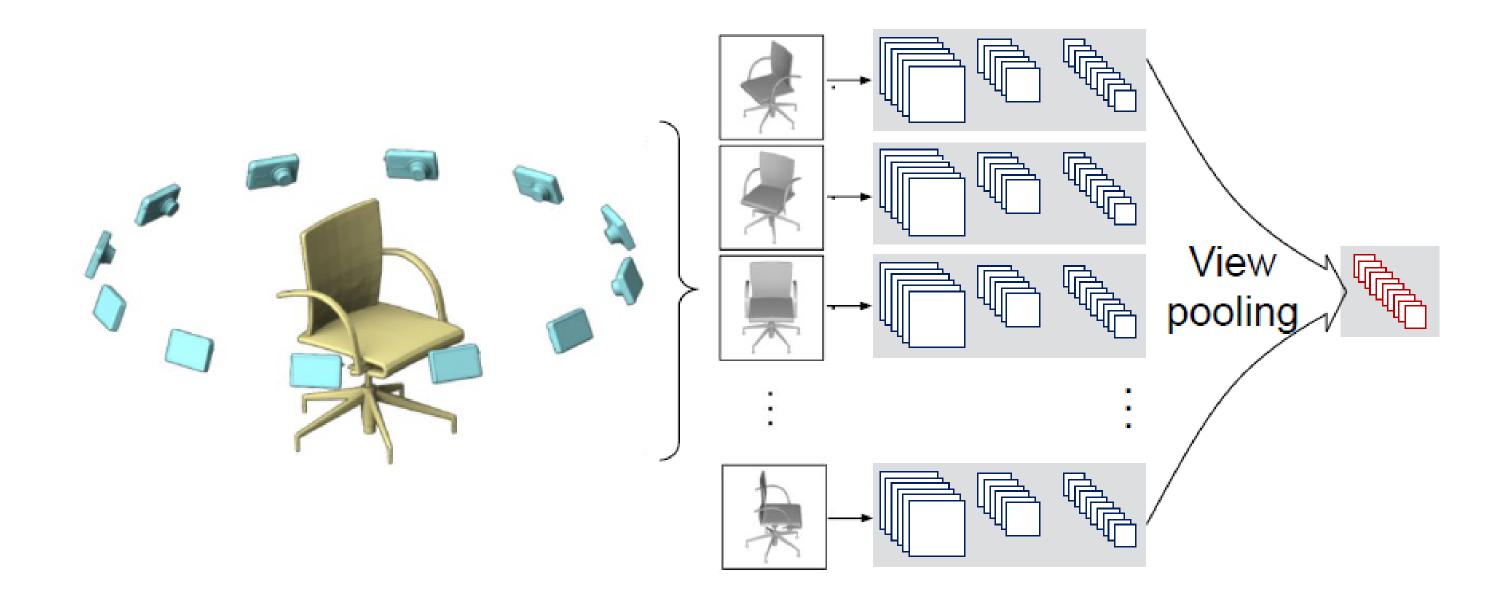


Multi-view Convolutional Neural Networks for 3D Shape Recognition



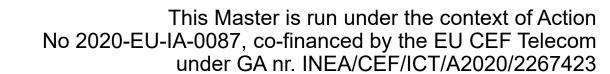
CNN₁: a ConvNet extracting image features

Multi-view Convolutional Neural Networks for 3D Shape Recognition

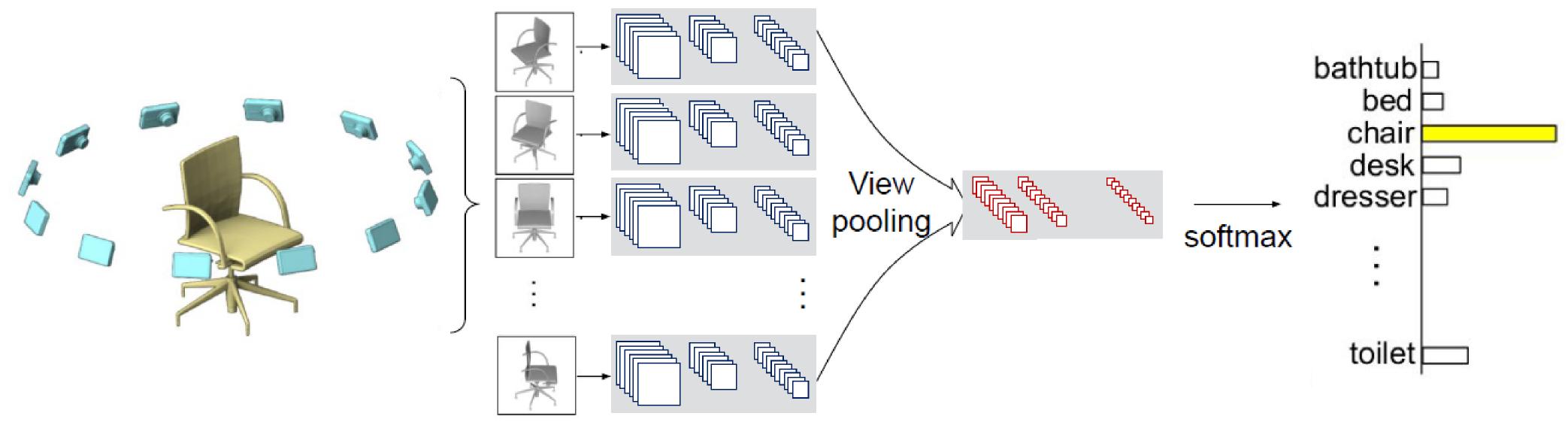


View pooling: element-wise max-pooling across all views

71



Multi-view Convolutional Neural Networks for 3D Shape Recognition



CNN₂: a second ConvNet producing shape descriptors

3D DL architectures: Multi-view approach

Multi-view Convolutional Neural Networks for 3D Shape Recognition

ModelNet40: Classification & Retrieval

Method	Classification (Accuracy)
Spherical Harmonics [Kazhdan et al.]	68.2%
LightField [Chen et al.]	75.5%
Volumetric Net [Wu et al.]	77.3%
ImageNet-trained CNN (VGG-M, 1 view)	83.0%
Multi-view convnet (MVCNN)	90.1%

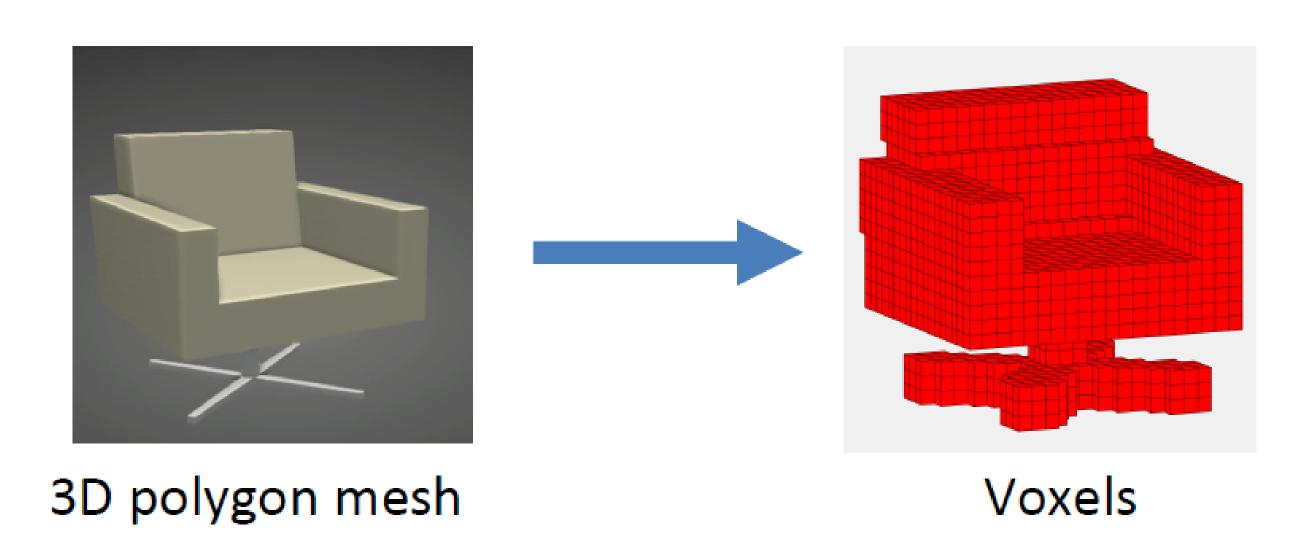
Hang Su et al. ICCV 2015

3D DL architectures: Multi-view approach

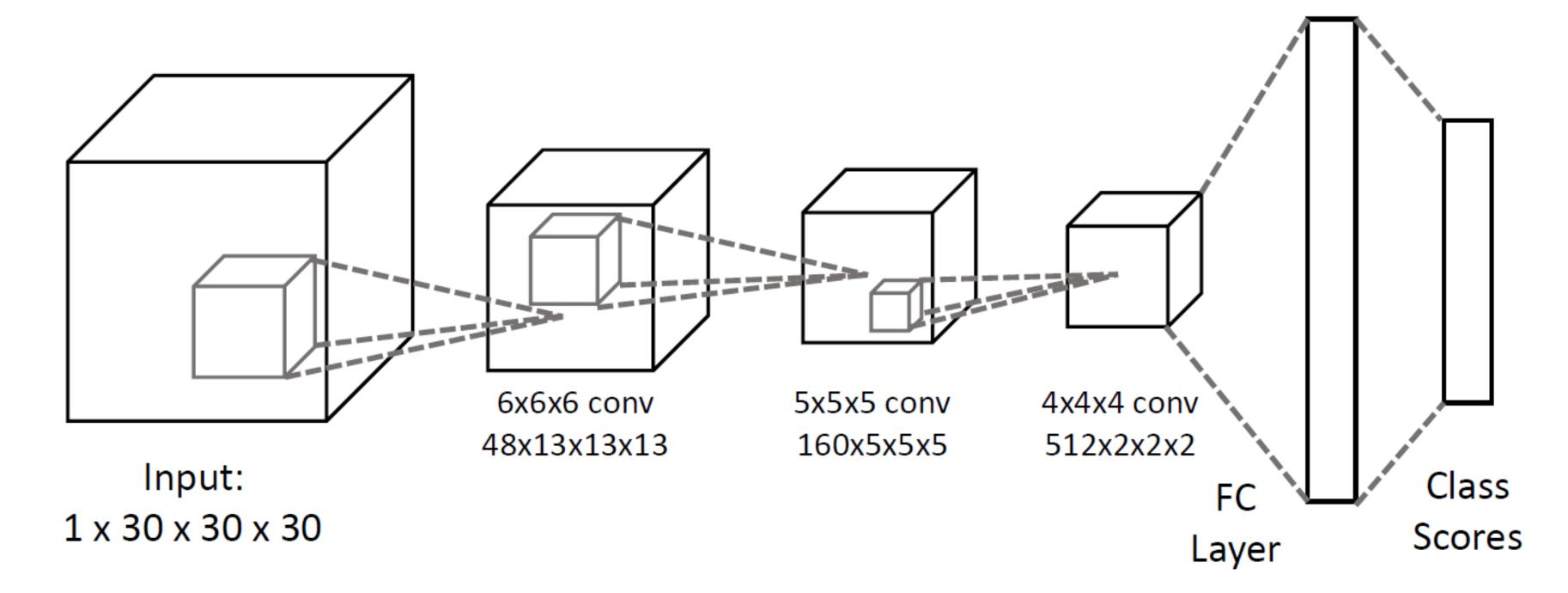
Multi-view Networks

- Pros:
 - √ Good performance
 - ✓ Can leverage vast literature of image classification
 - ✓ Can use pretrained features
- Cons
 - x Need projection
 - x Issue with noisy and/or incomplete input, e.g., point cloud

Voxelization: Convert shape to 3D regular volumetric grid

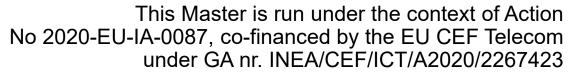


Processing Voxel Inputs -> 3D Convolution



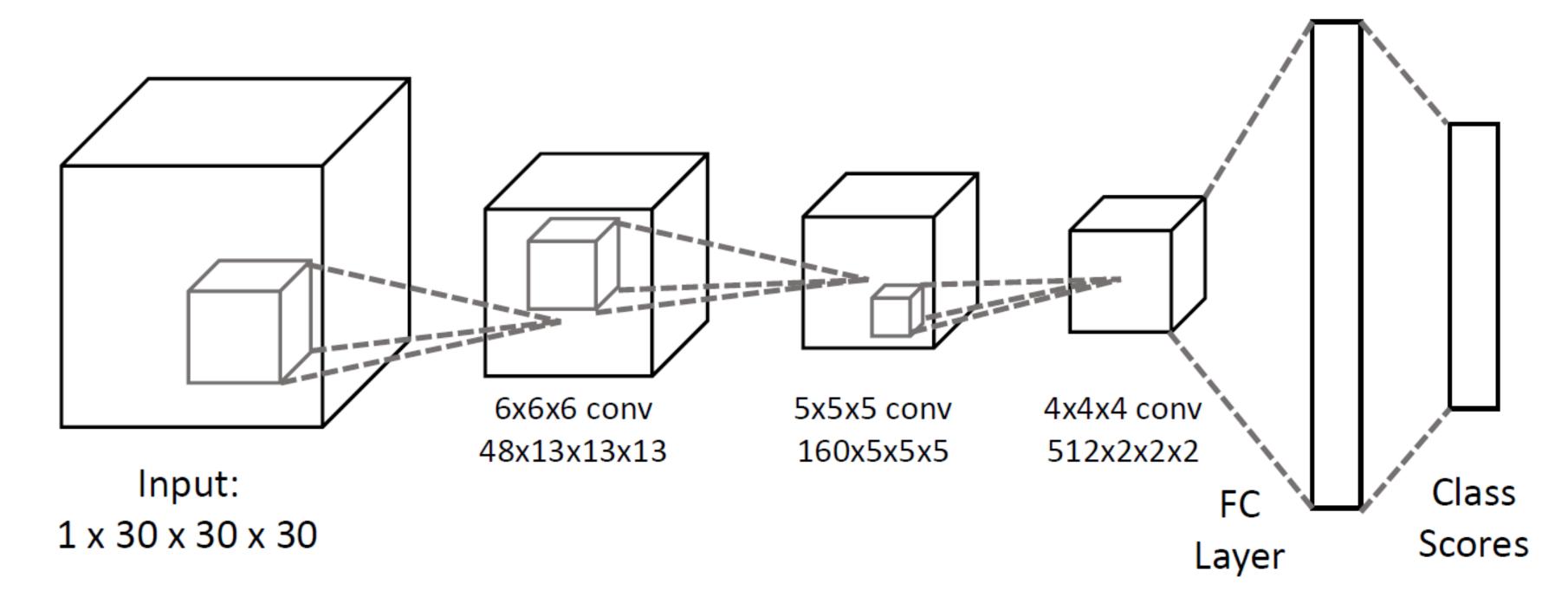
76

"3D ShapeNet", Wu et al., CVPR 2015



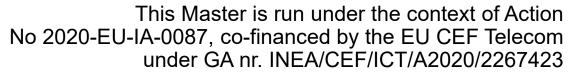
3D DL architectures: Volumetric approach

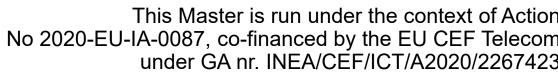
Processing Voxel Inputs -> 3D Convolution Computationally and memory expensive! Requires low-res input



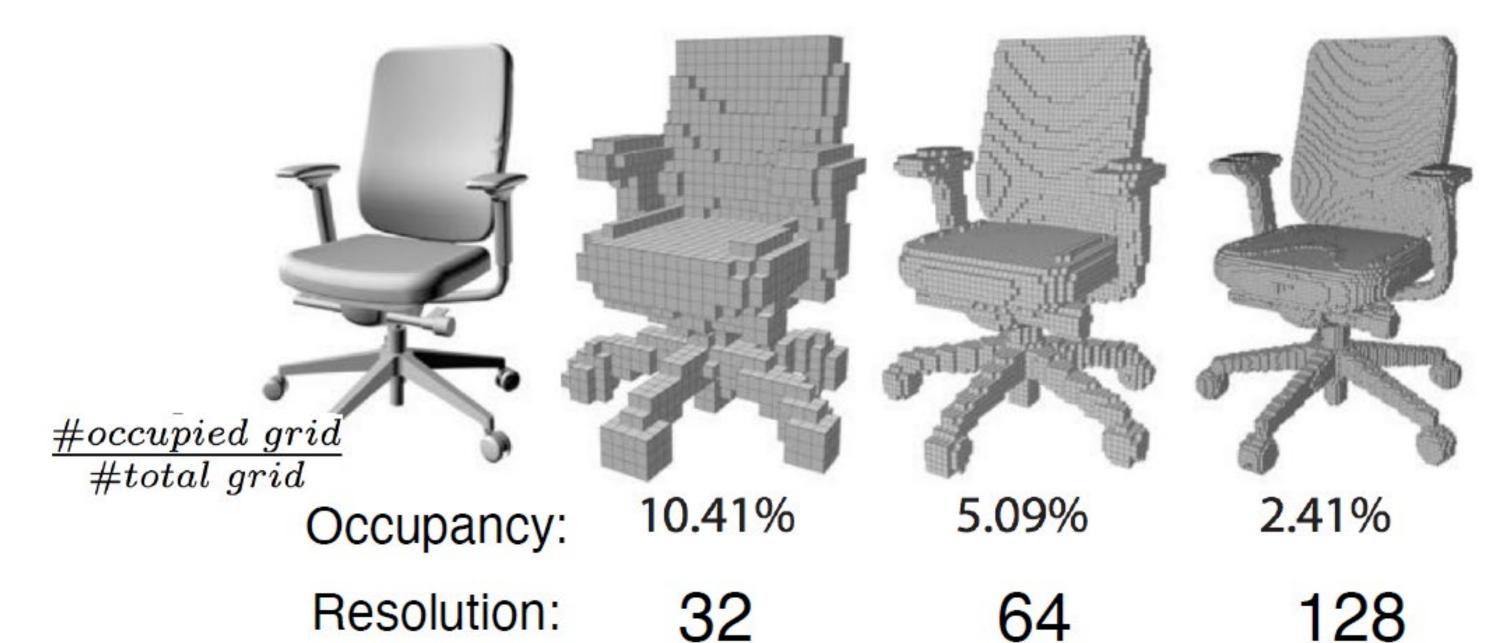
77

"3D ShapeNet", Wu et al., CVPR 2015





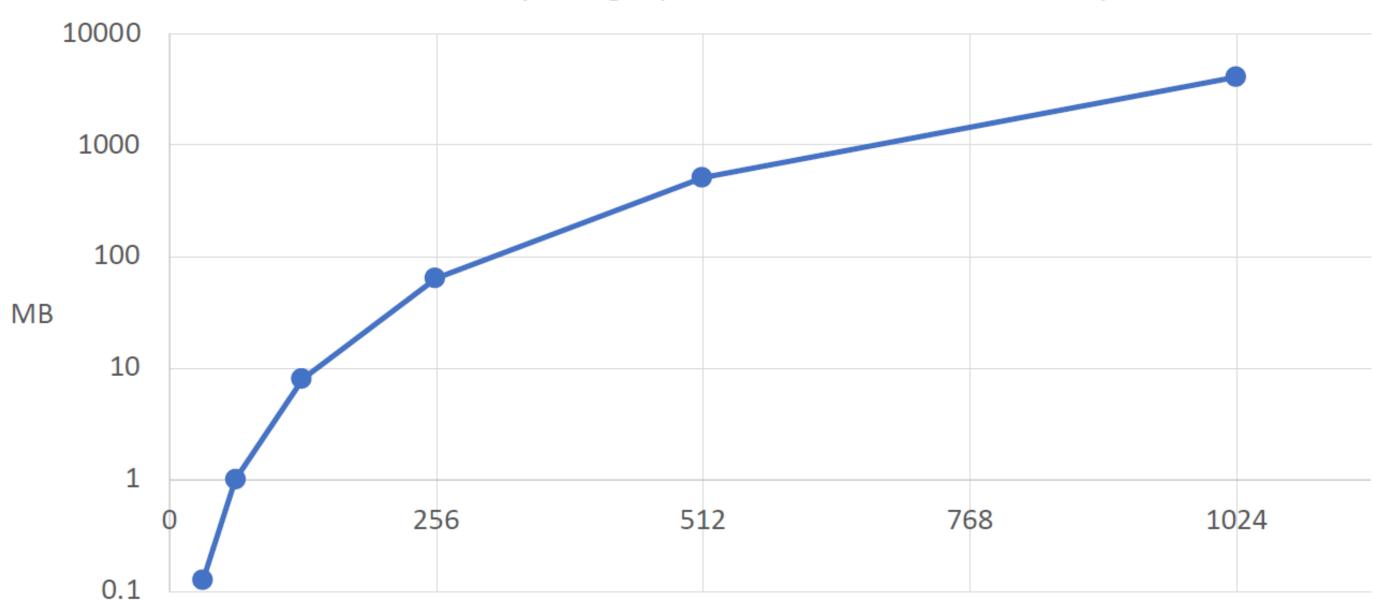
Sparsity of 3D data



Running convolution on so much empty space is wasteful!

Memory usage



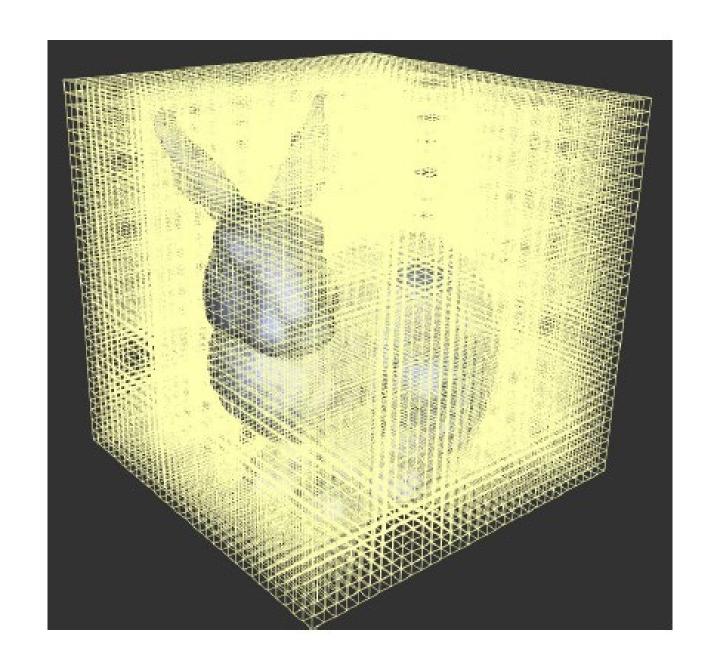


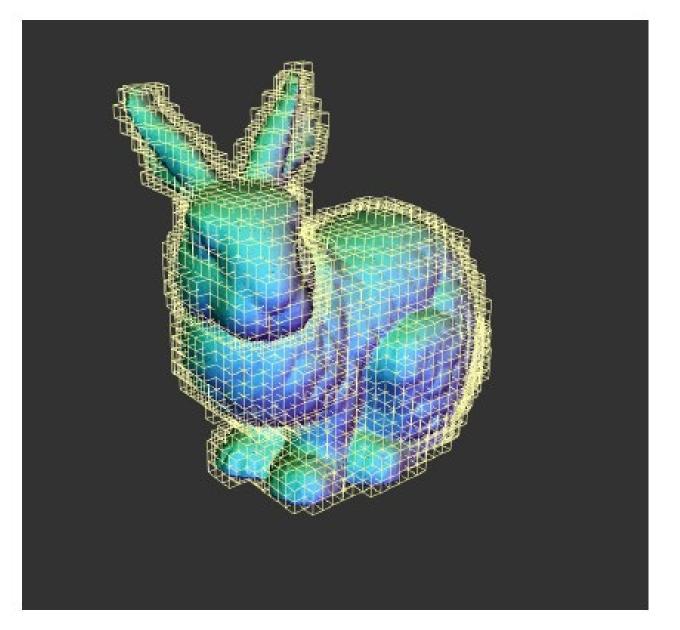
Storing 1024³ voxel grid takes 4GB of memory!

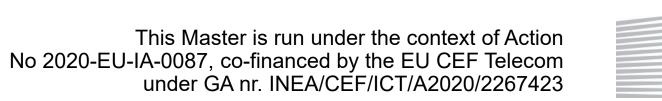
79

Solution —> Octave Tree Representations

- Store the sparse surface signals
- Constrain the computation near the surface

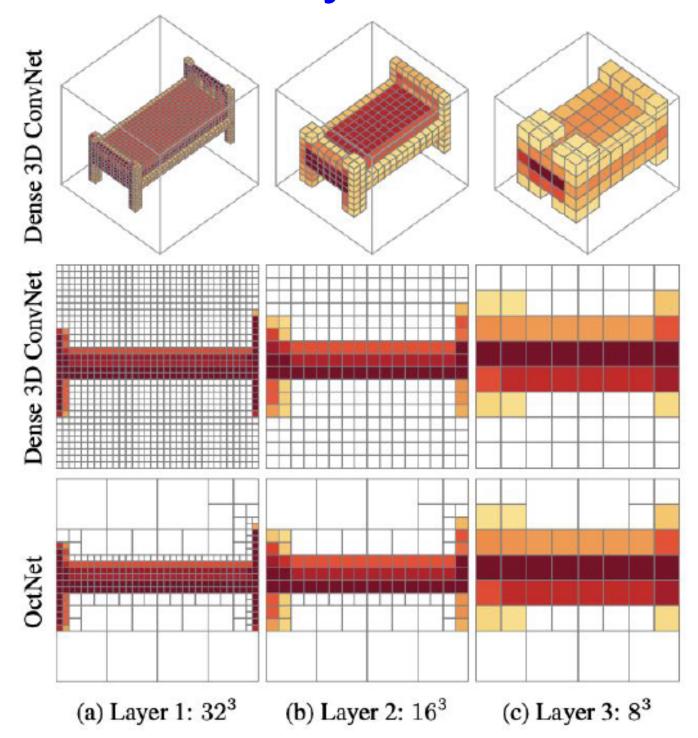


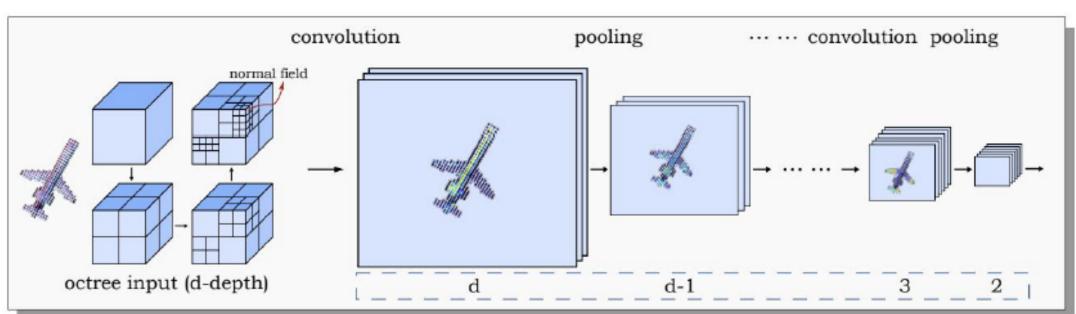




3D DL architectures: Volumetric approach

Octree: Recursively Partition the Space

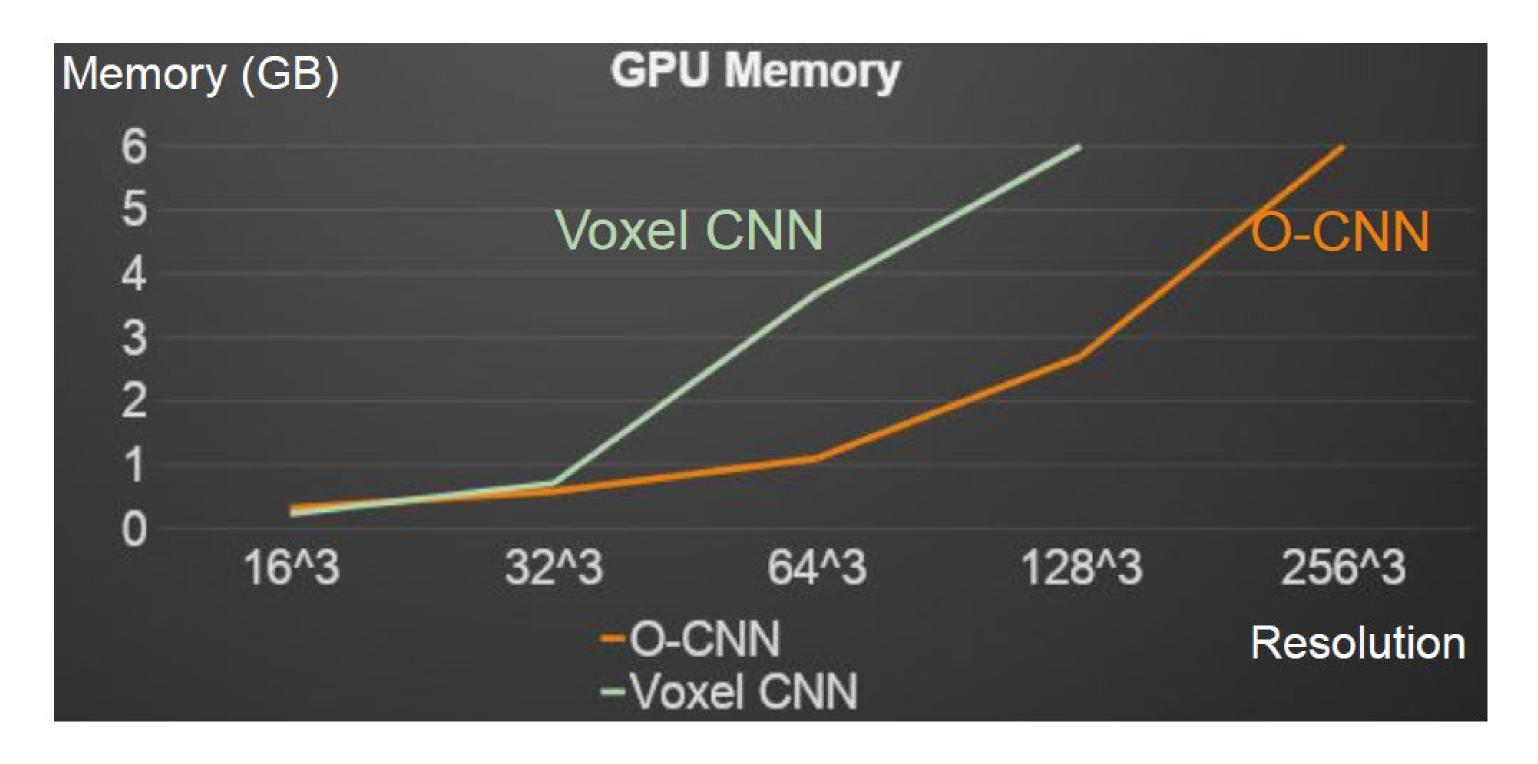




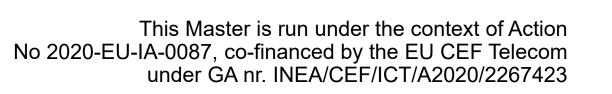
Riegler et al. OctNet. CVPR 2017

Wang et al. O-CNN. SIGGRAPH 2017

Memory Efficiency

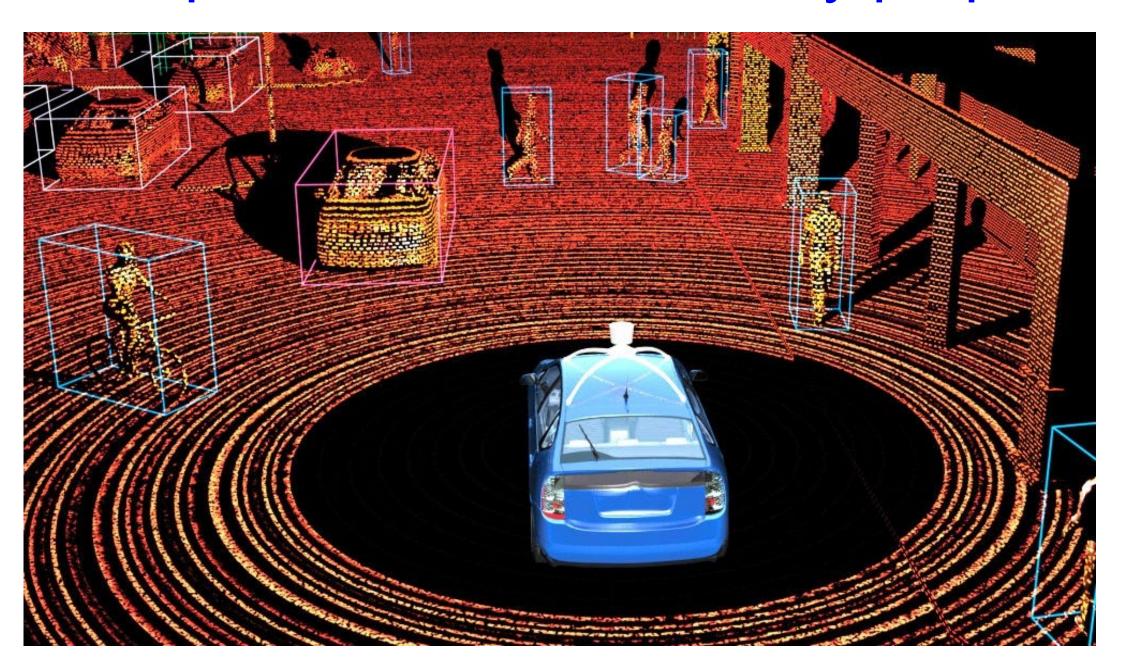


82



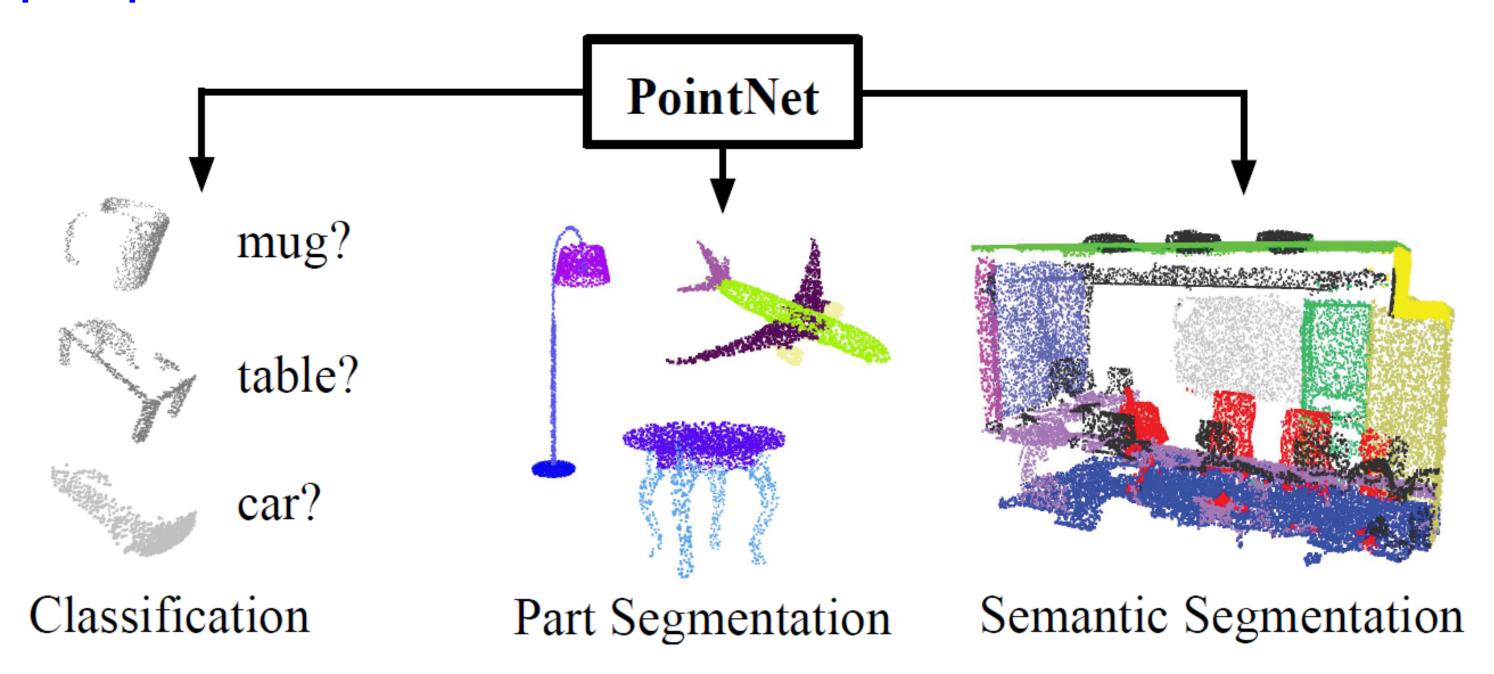
Motivation:

- Lots of scanned data are raw 3D point clouds
- Process raw input, i.e., point cloud, without any preprocessing



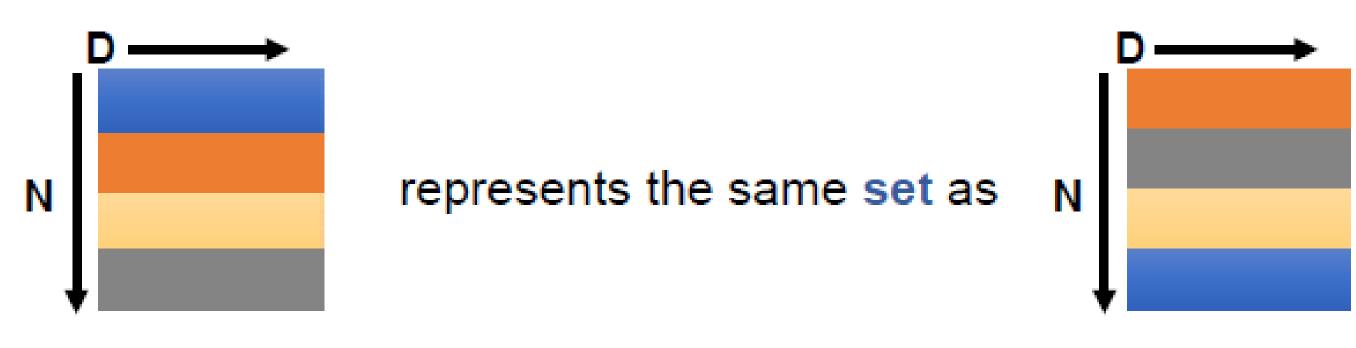
PointNet: (Qi et al., CVPR 2017)

Processes input point clouds for various tasks



Desired Properties of PointNet:

Permutation invariance



2D array representation

PointNet architecture:

MLP layer (shared parameters)

$$(1,1,1) \longrightarrow$$

Input 3D point coord.

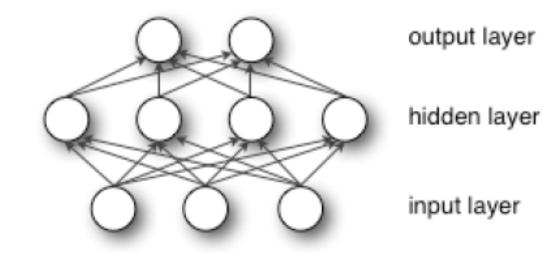
Kalogerakis E.

86

PointNet architecture:

MLP layer (shared parameters)

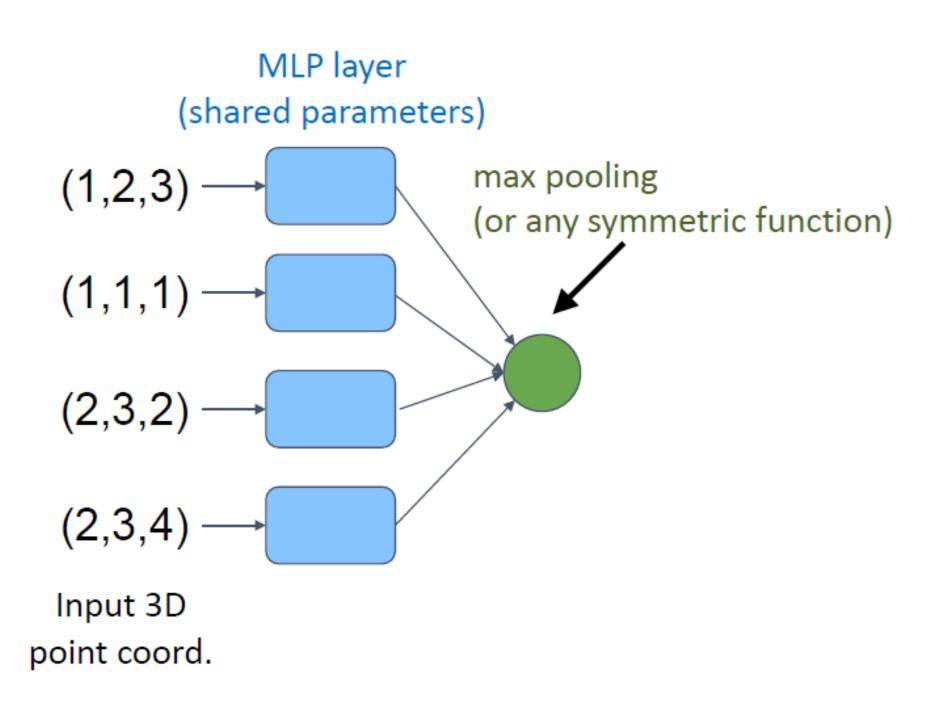
Input 3D point coord.



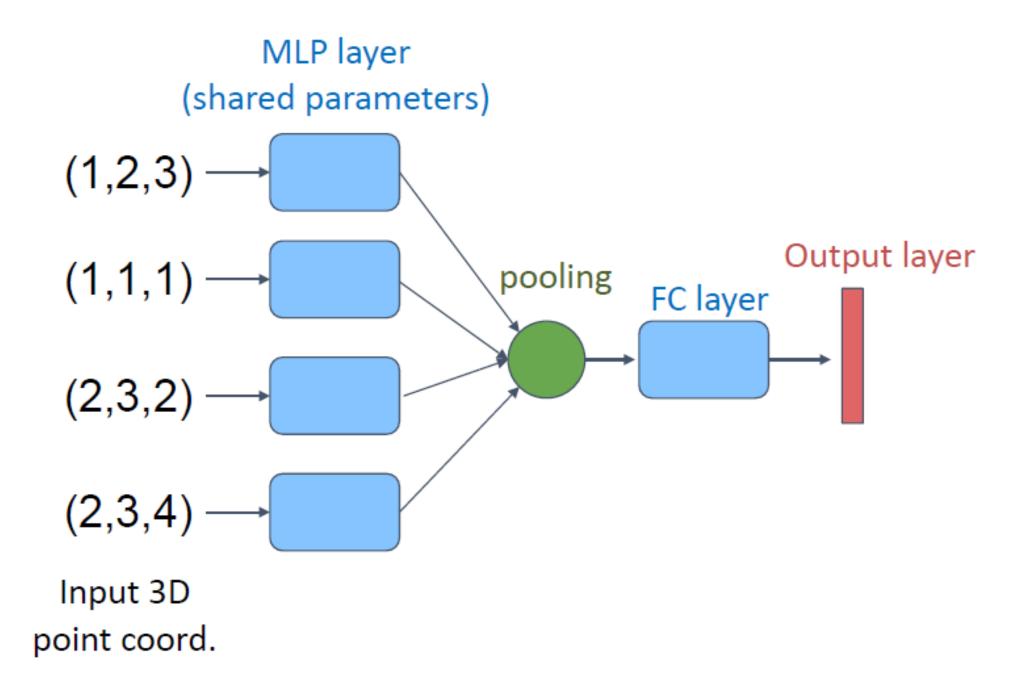
Simply a fully connected NN with one hidden layer,
3 inputs for 3D points, and T outputs (T is layer parameter)

3D DL architectures: Point-based approach

PointNet architecture:

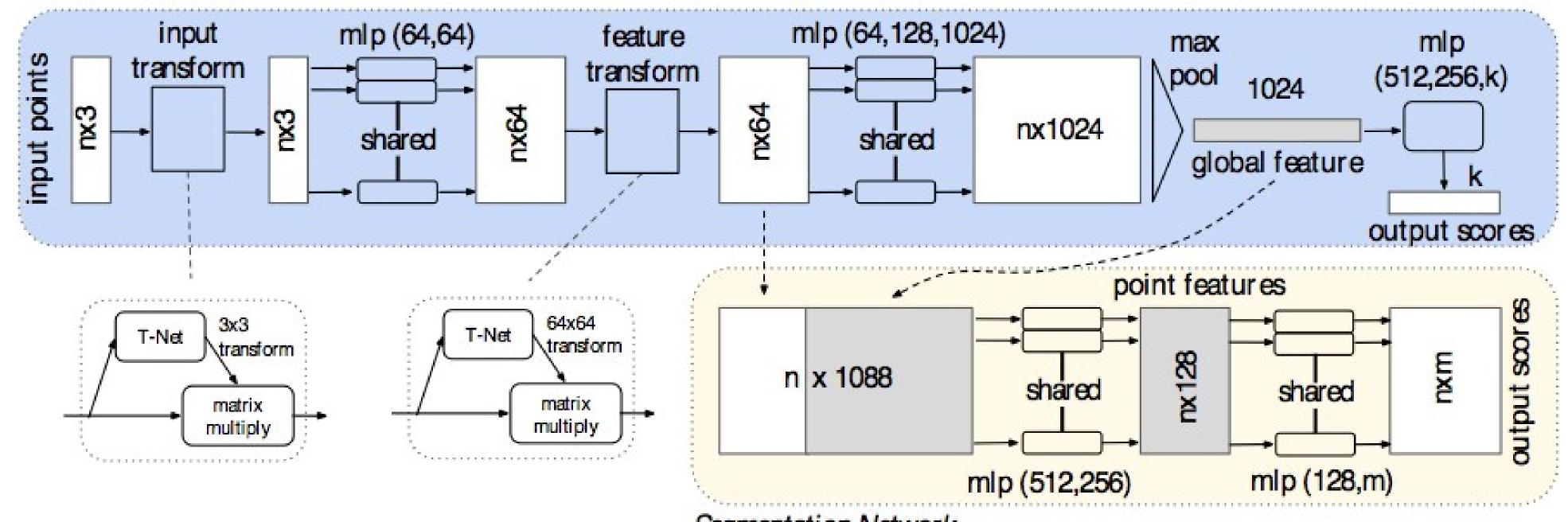


PointNet architecture:



PointNet architecture:

Classification Network

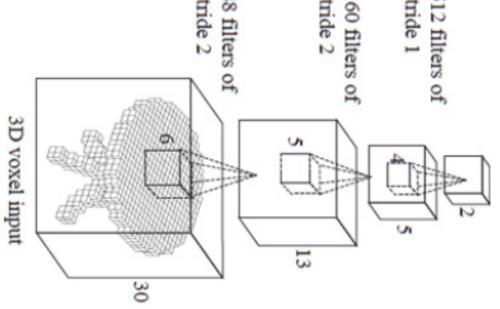


Segmentation Network

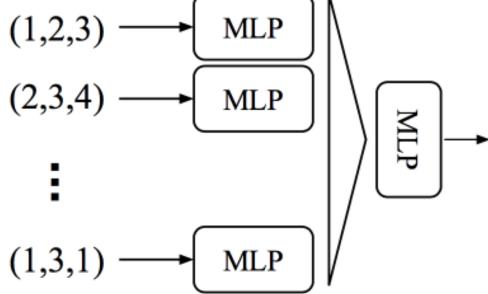
Limitations of PointNet

Hierarchical feature learning Multiple levels of abstraction

V.S. Either one point or all points (1,2,3)MLP



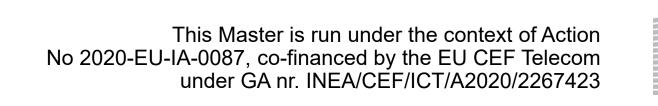
3D CNN (Wu et al.)



Global feature learning

PointNet (vanilla) (Qi et al.)

No local context for each point!



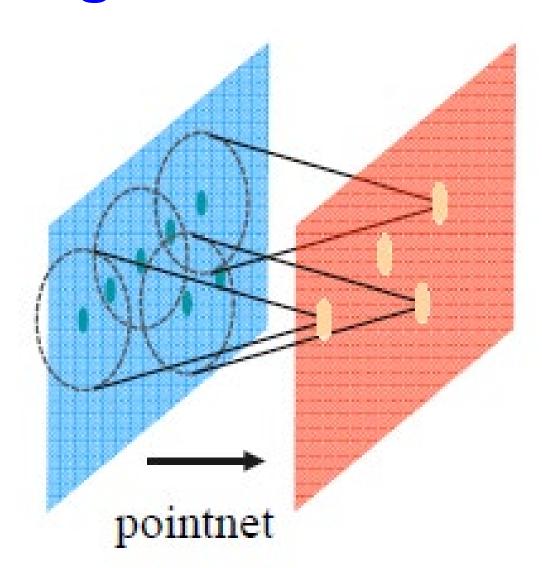
Points in Metric Space

- Learn "kernels" in 3D space and conduct convolution
- Kernels have compact spatial support
- For convolution, we need to find neighboring points
- Possible strategies for range query
 - Ball query (results in more stable features)
 - k-NN query (faster)

3D DL architectures: Point-based approach

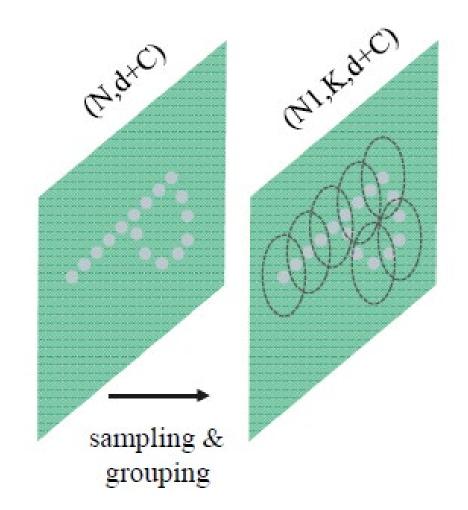
PointNet+: (Qi et al., NIPS 2017)

- Use PointNet in local regions
- Aggregate local features by PointNet again
- -> Hierarchical feature learning



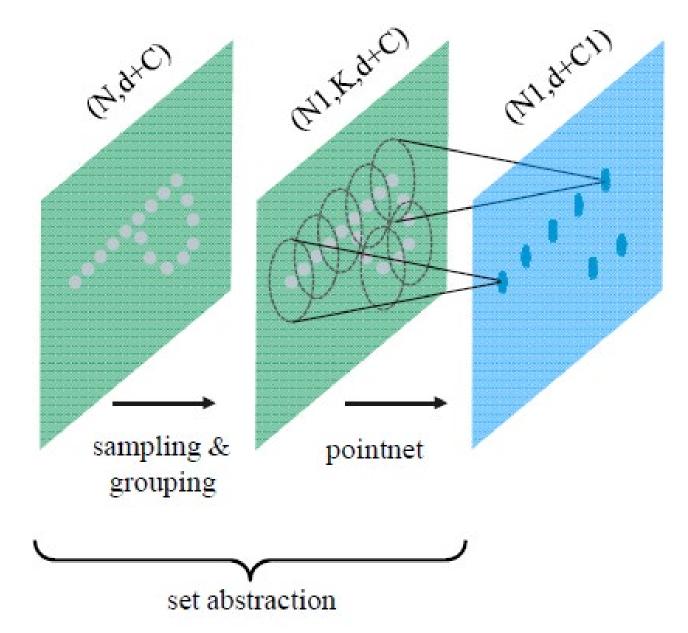
PointNet++:

- Sampling: Farthest Point Sampling (FPS)
- Grouping: Radius-based ball query



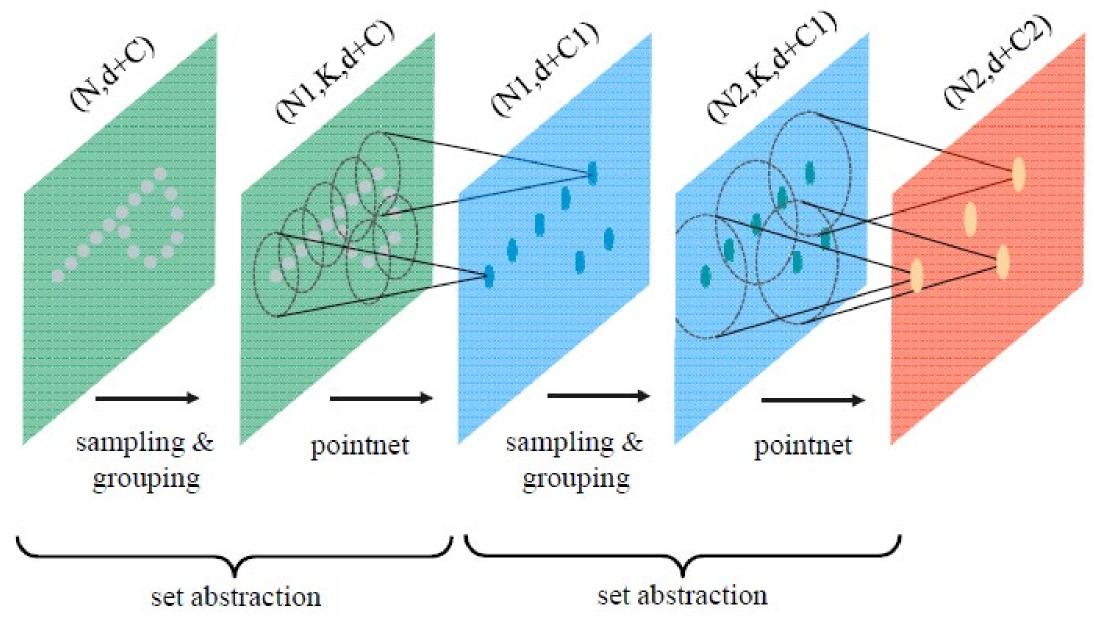
PointNet++:

Shared PointNet applied in each local region using local coordinates



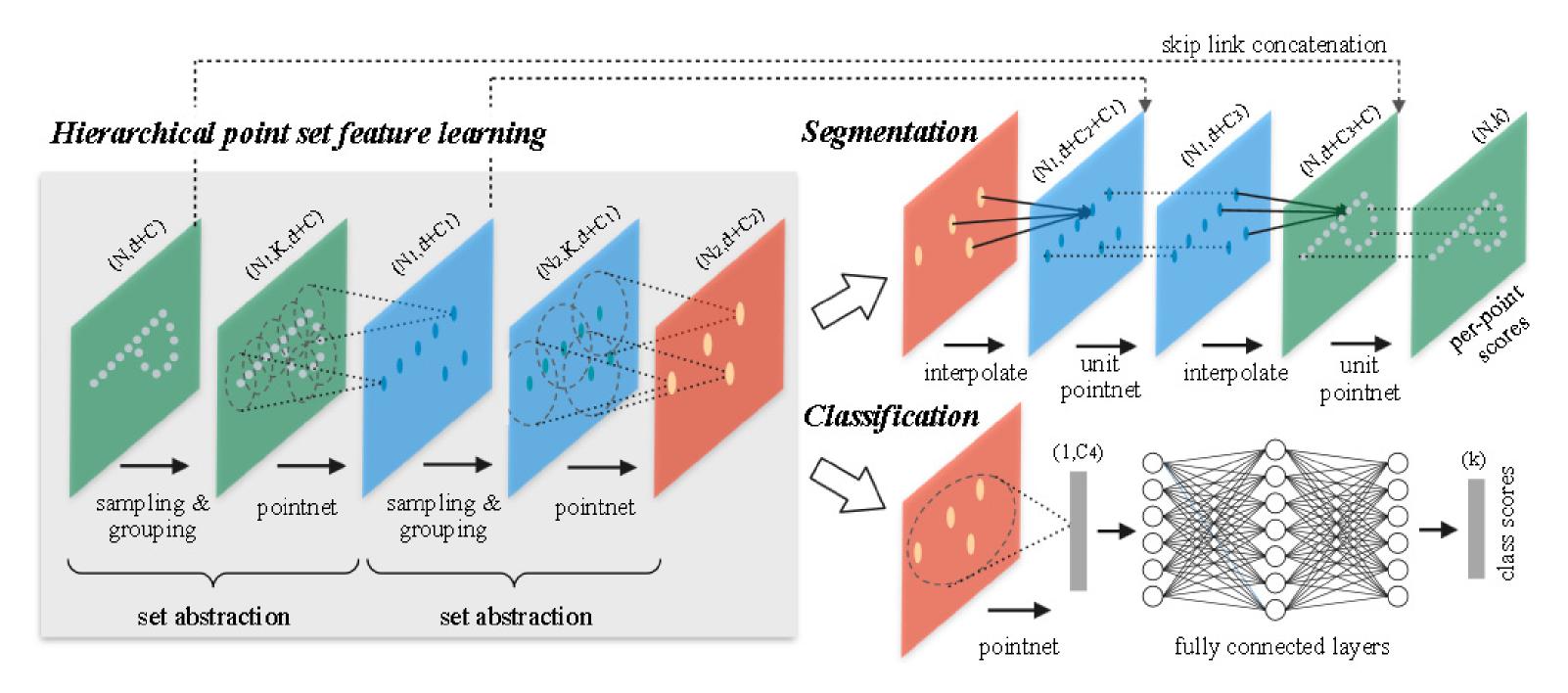
PointNet++:

Shared PointNet applied in each local region using local coordinates



3D DL architectures: Point-based approach

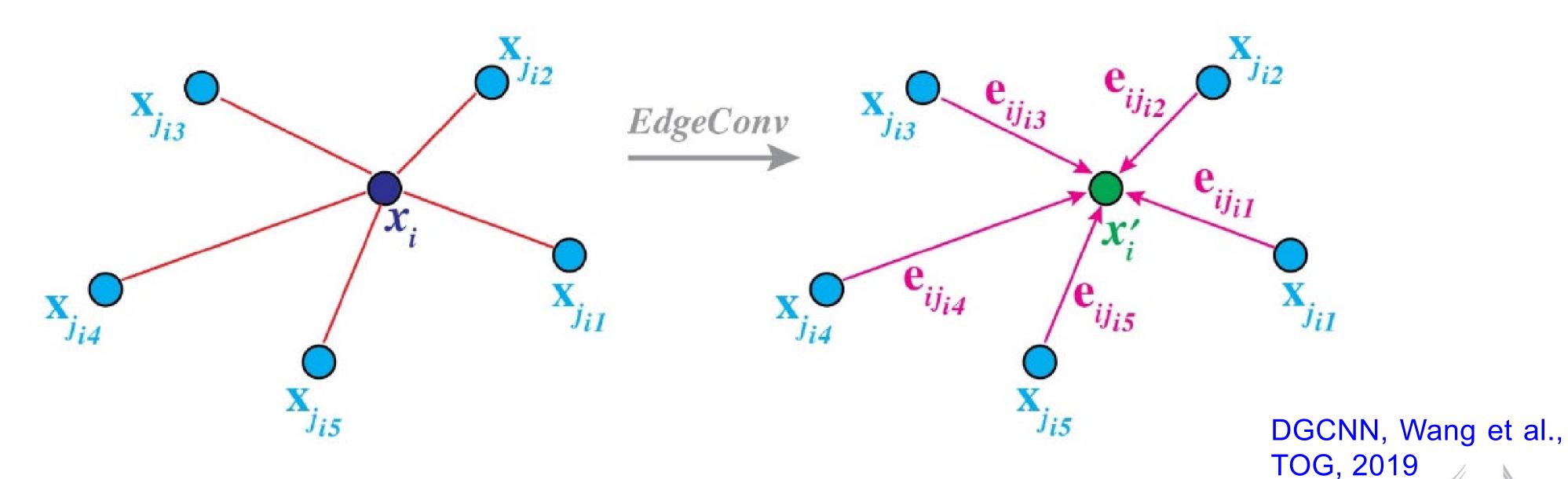
PointNet++ architecture



Qi et al., NIPS 2017

Point Convolution as Graph Convolution: Dynamic Graph CNN

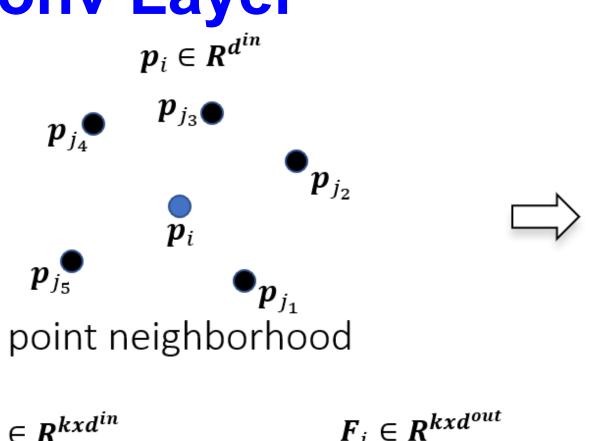
- Points -> Nodes
- Neighborhood —> Edges
- Graph CNN for point cloud processing

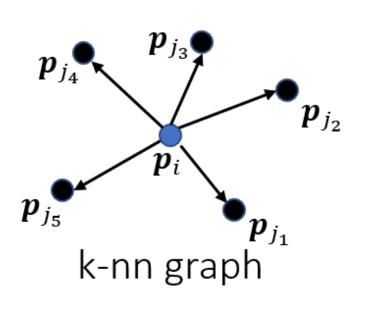


3D DL architectures: Point-based approach

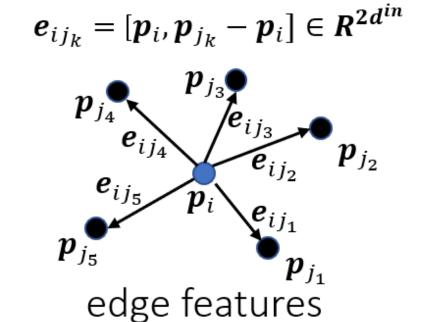
Dynamic Graph CNN

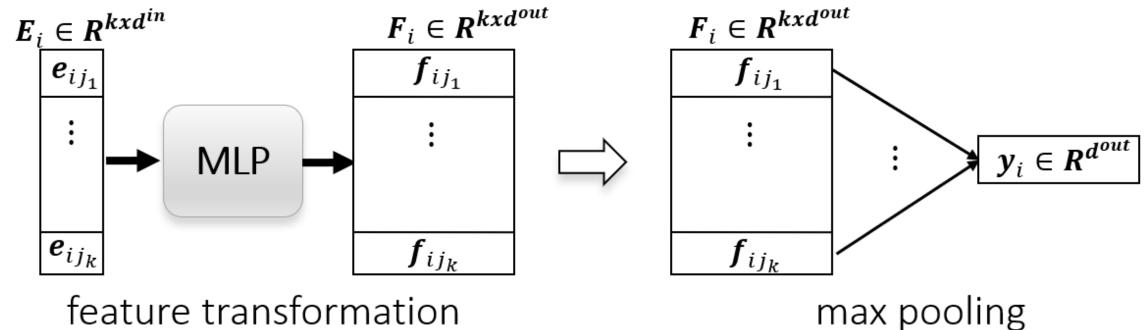
EdgeConv Layer

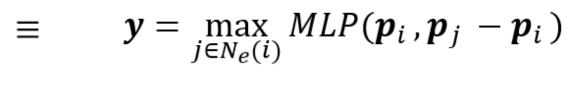






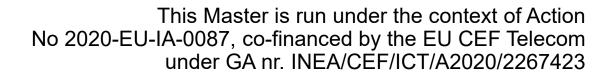






output feature

DGCNN, Wang et al., TOG, 2019

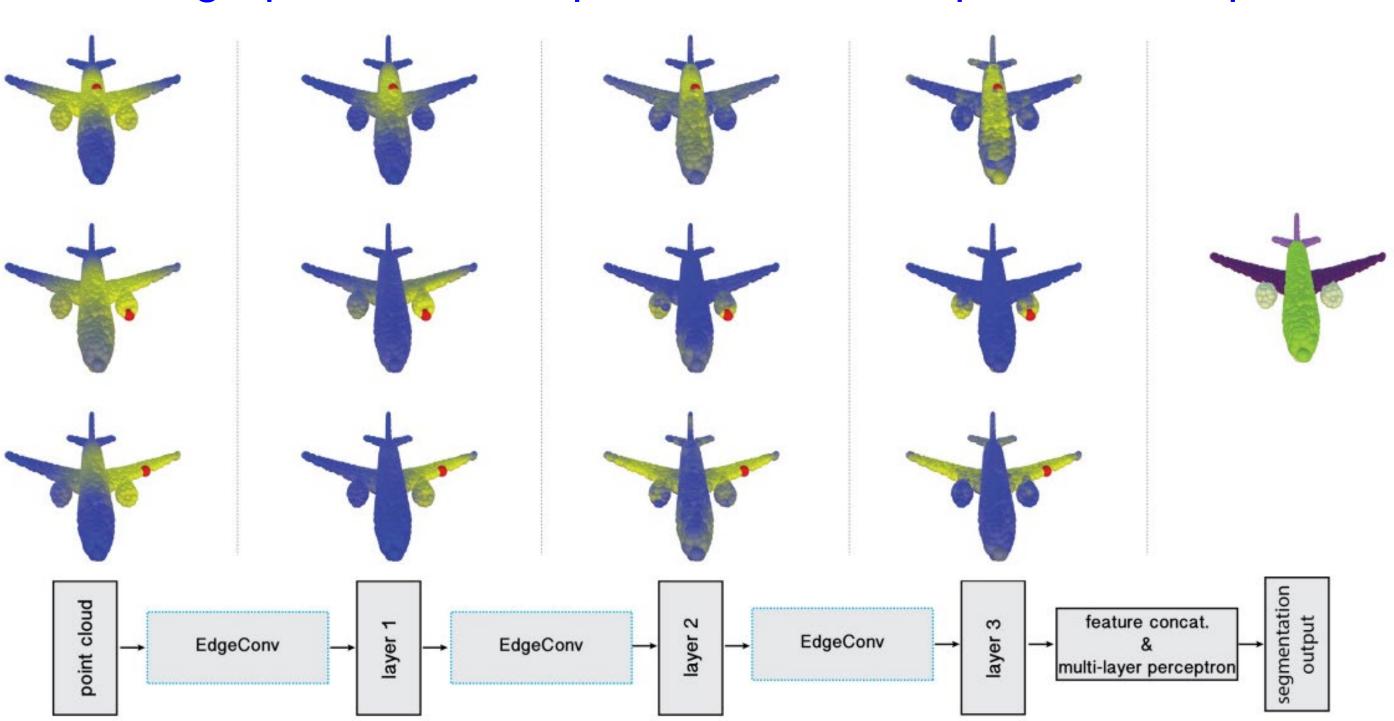


3D DL architectures: Point-based approach

Dynamic Graph CNN:

At each layer, each local graph is rebuilt upon the feature space of the previous EdgeConv

layer

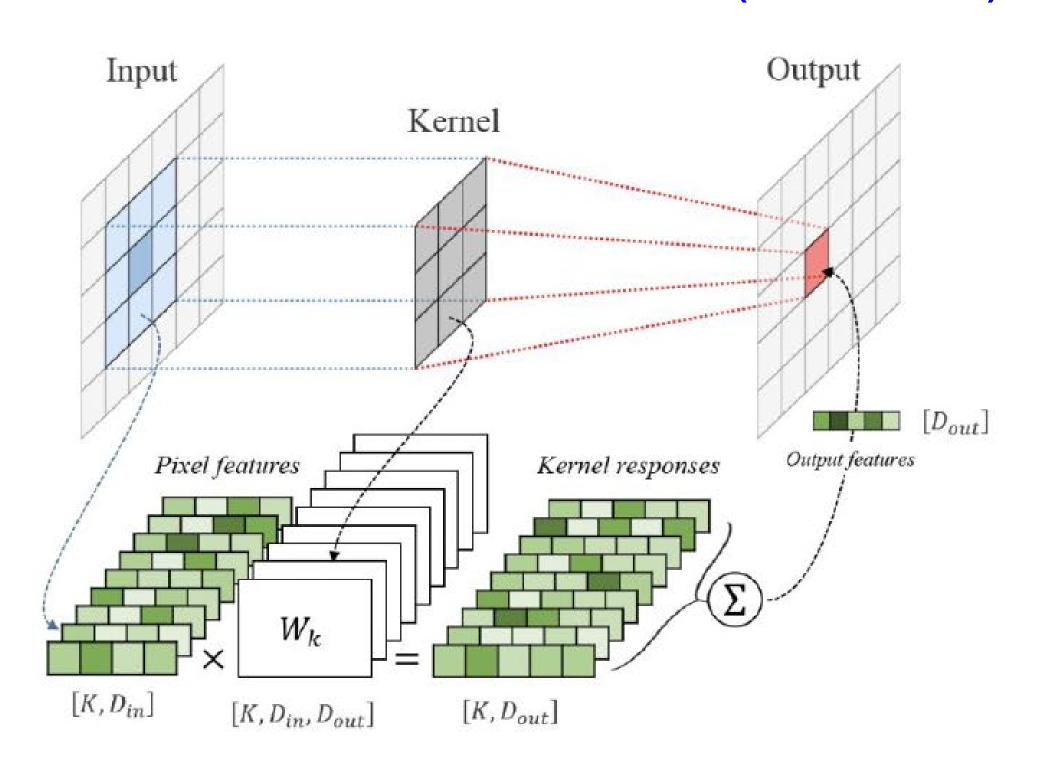


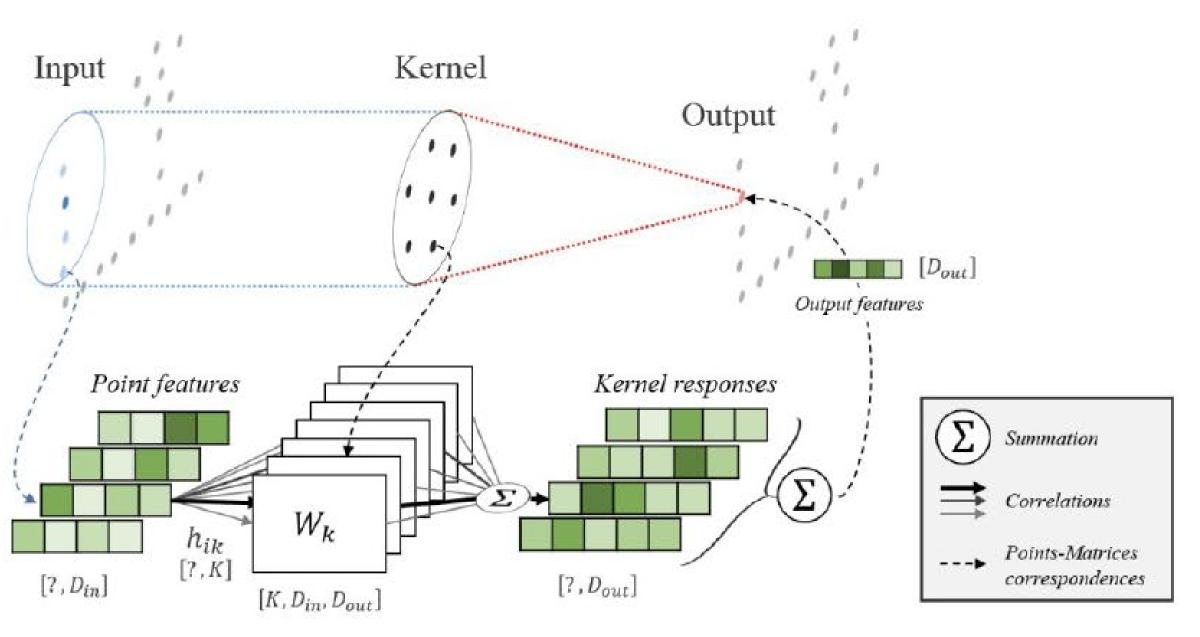
Standard GCNs are not Geometry Aware:

- Note that points are sampled from surfaces
- Ideally, features describe the geometry of the underlying surface
- Should be sample invariant
- But GCNs lack design to address sample invariance
- Solution: Estimate the continuous kernel and point density for continuous convolution

3D DL architectures: Point-based approach

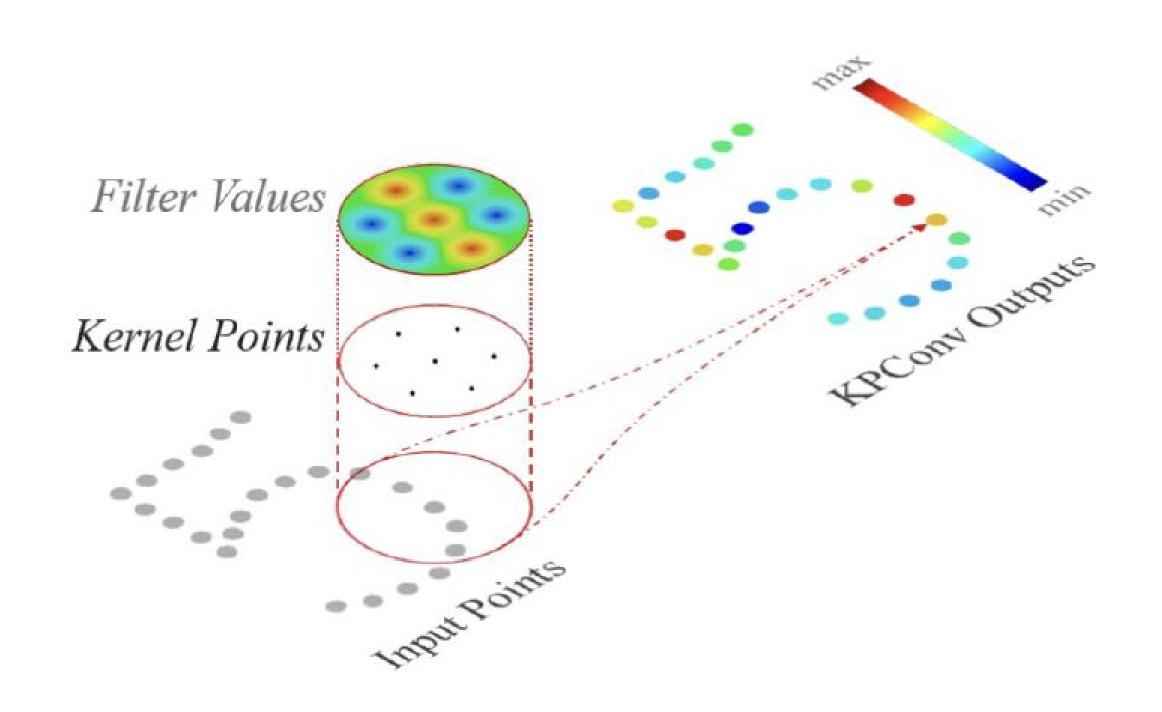
Kernel Point Convolution (KPConv)





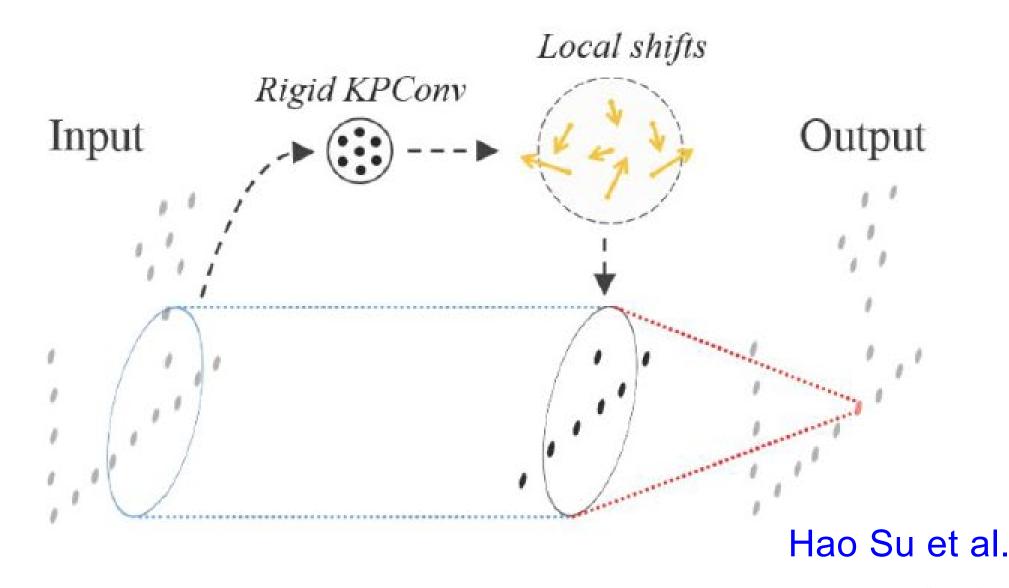
3D DL architectures: Point-based approach

Kernel Point Convolution (KPConv)



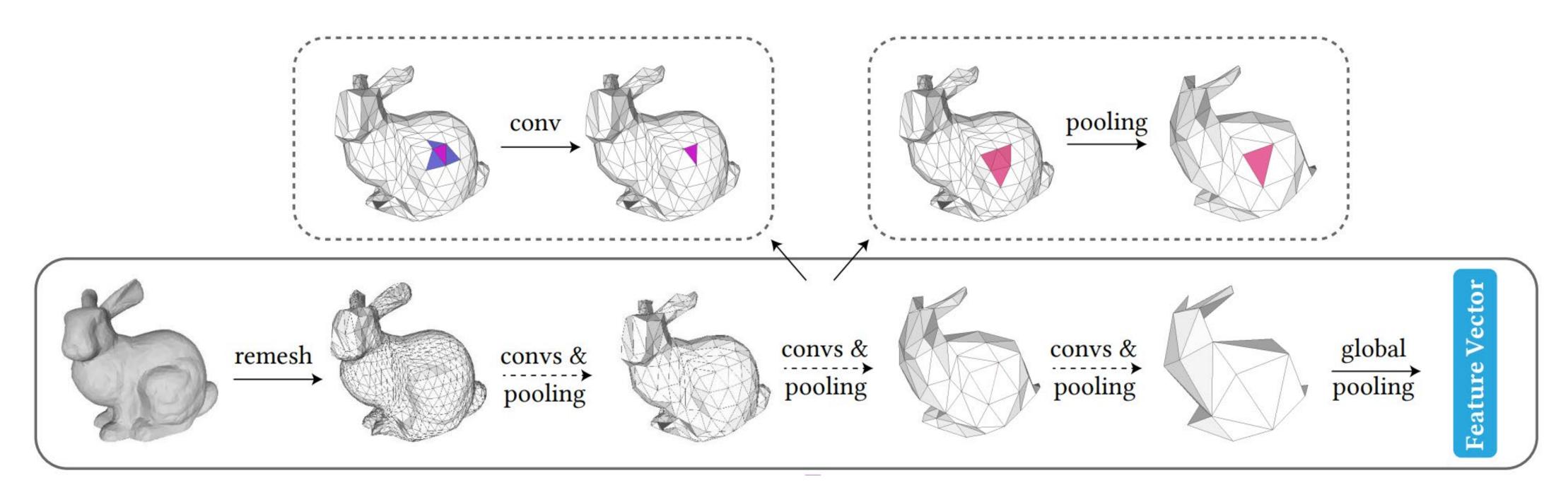
Deformable point-based kernel

3D version of 2D deformable convolution



3D DL architectures: Mesh-based approach

Subdivision-Based Mesh Convolution Networks (SubdivNet)

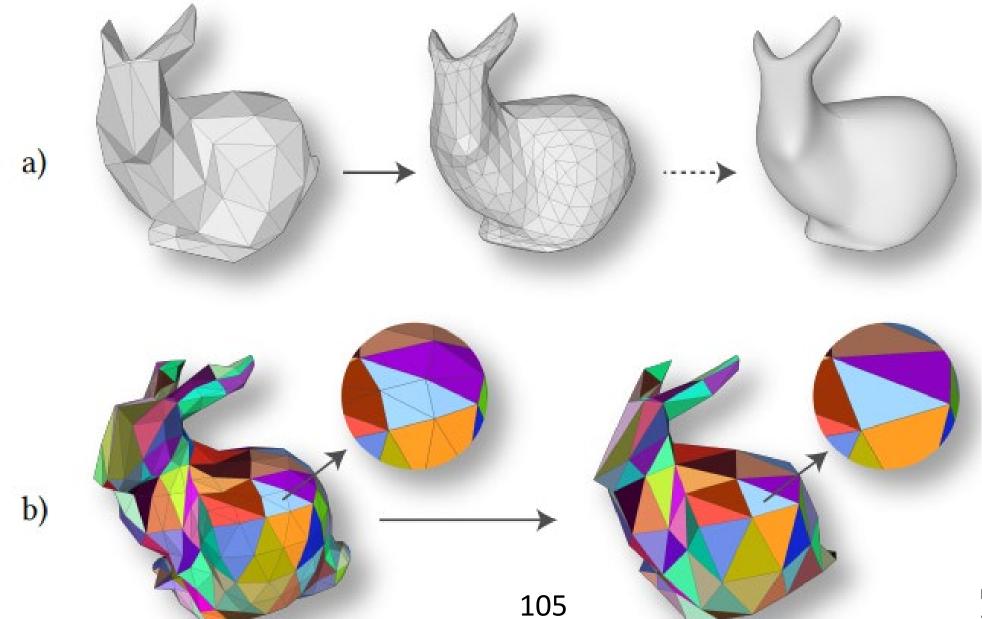


Shi-Min Hu et al., TOG, 2021

3D DL architectures: Mesh-based approach

SubdivNet:

 A subdivision surface provides a hierarchical multi-resolution structure, in which each face in a closed triangle mesh is exactly adjacent to three faces



Shi-Min Hu et al., TOG, 2021

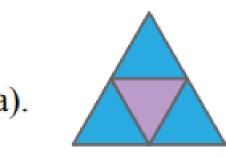
is Master is run under the context of Action -0087, co-financed by the EU CEF Telecom nder GA nr. INEA/CEF/ICT/A2020/2267423

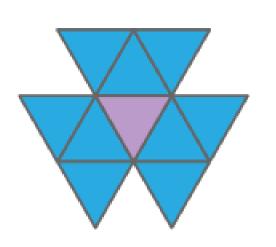
3D DL architectures: Mesh-based approach

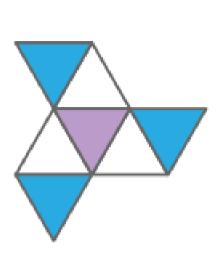
SubdivNet:

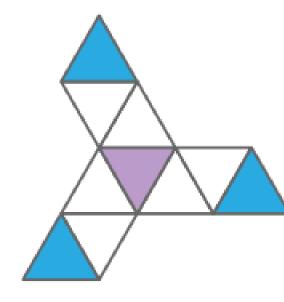
Can support mesh convolution

Mesh conv. kernels









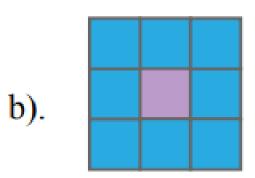
k=3, d=1

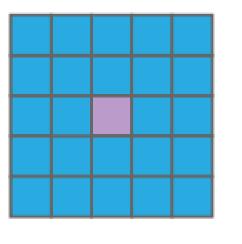
k=5, d=1

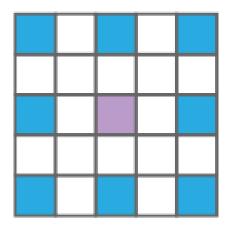
k=3, d=2

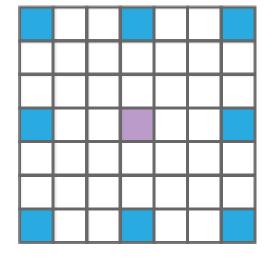
k=3, d=3

2D conv. kernels









k=3, d=1

k=5, d=1

k=3, d=2

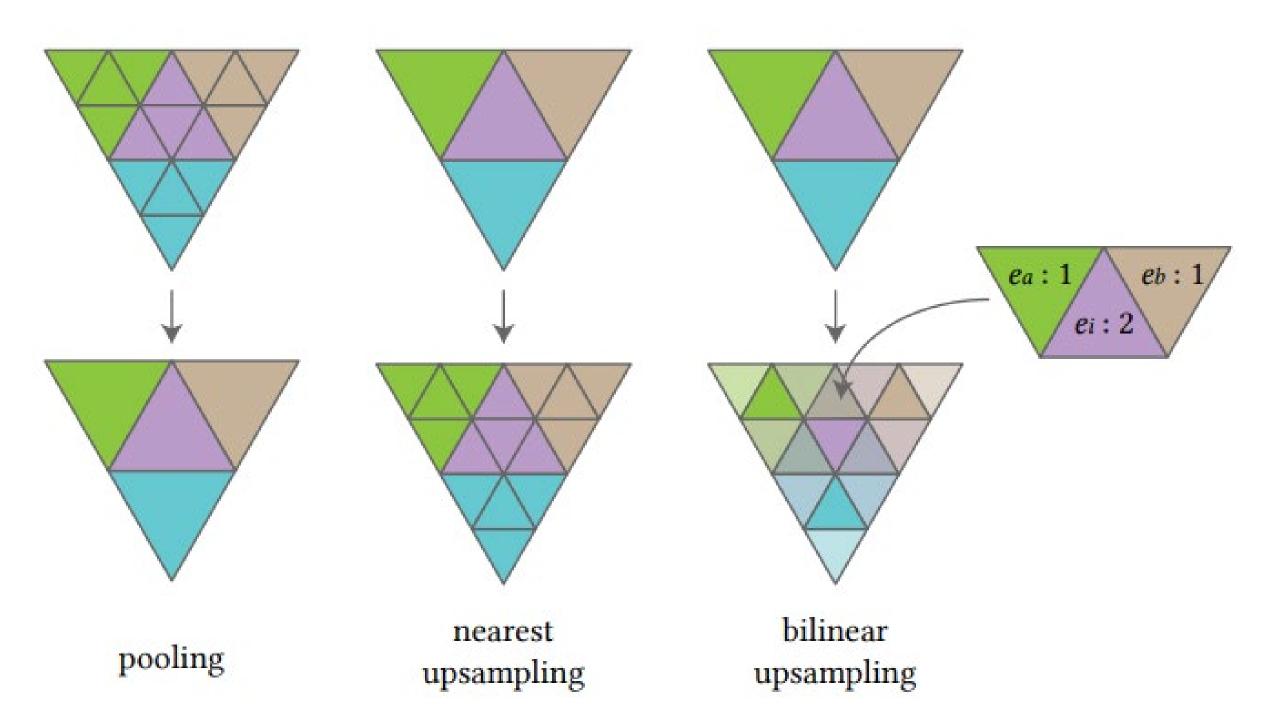
k=3, d=3

Shi-Min Hu et al., TOG, 2021

3D DL architectures: Mesh-based approach

SubdivNet:

Can support pooling and upsampling



107

Master programmes in Artificial Intelligence 4 Careers in Europe

Today's Agenda

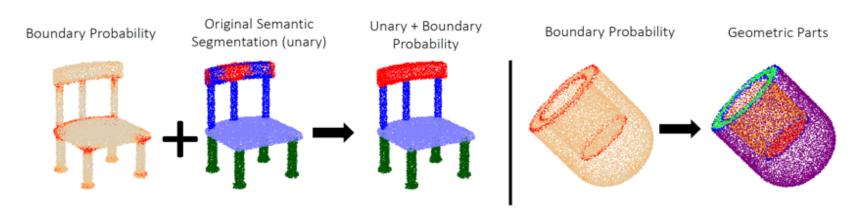
- Who are we?
- What is 3D Vision
- Geometry
- 3D shape representations
- 3D shape datasets
- 3D Deep Learning architectures
- What we do

108

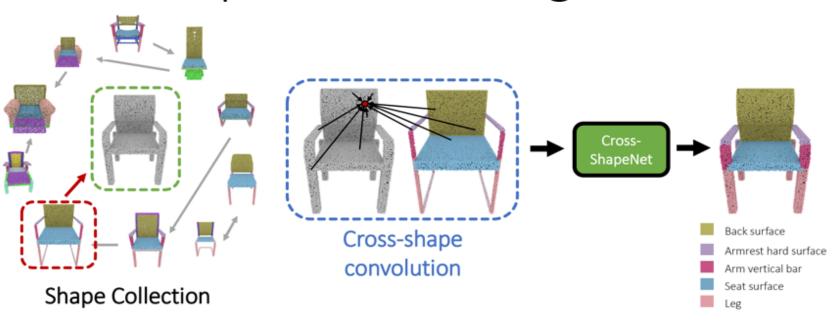
What we do: 3D shape understanding

3D Building Semantic Understanding

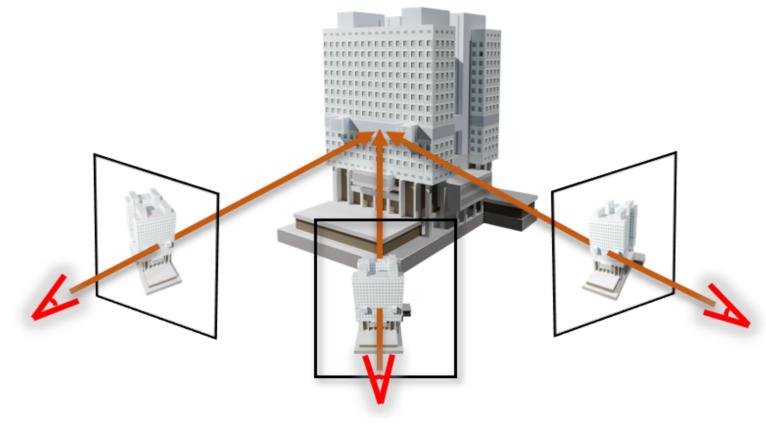
Geometric/Semantic Decomposition



Cross-shape semantic segmentation

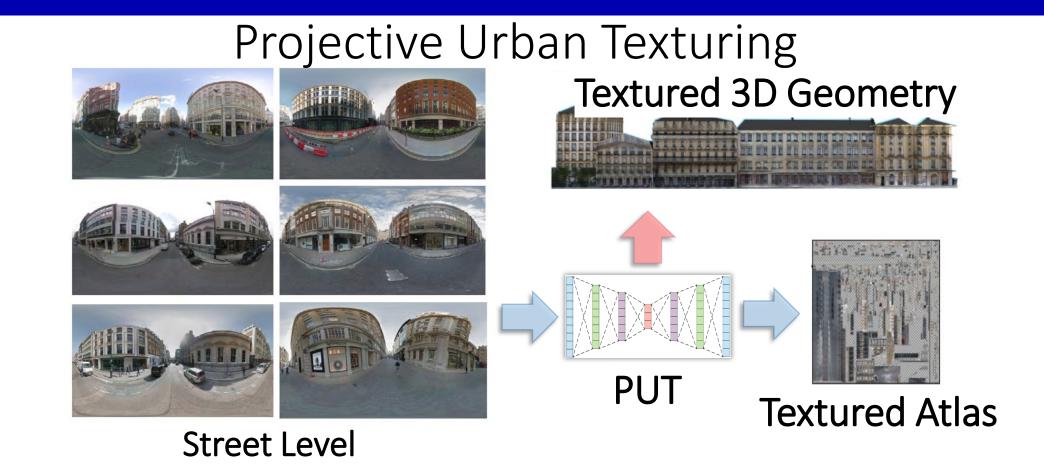


Neural 3D Reconstruction



What we do: Texture Generation for 3D Data

Single-View Guided Façade Synthesis

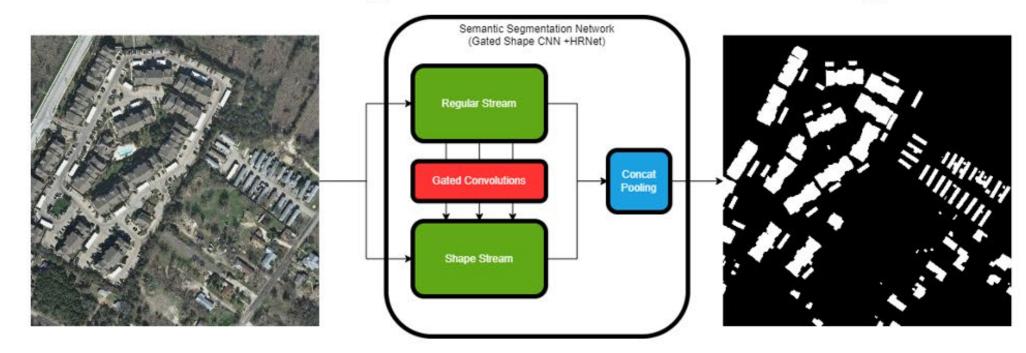


Surface Texture
Generation via T2I
Diffusion Models

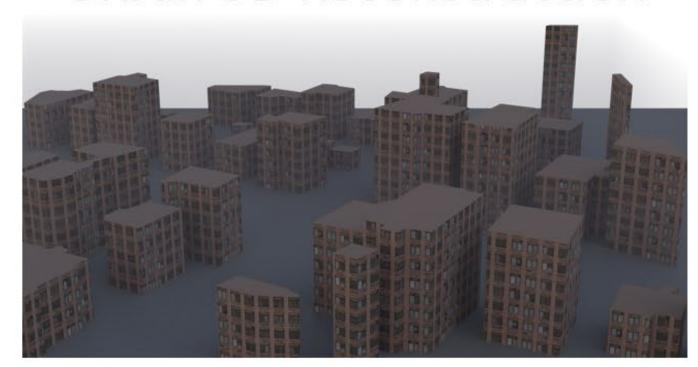
Panoramic Images

What we do: Urban Semantic Understanding from Remote Sensing Data Sources

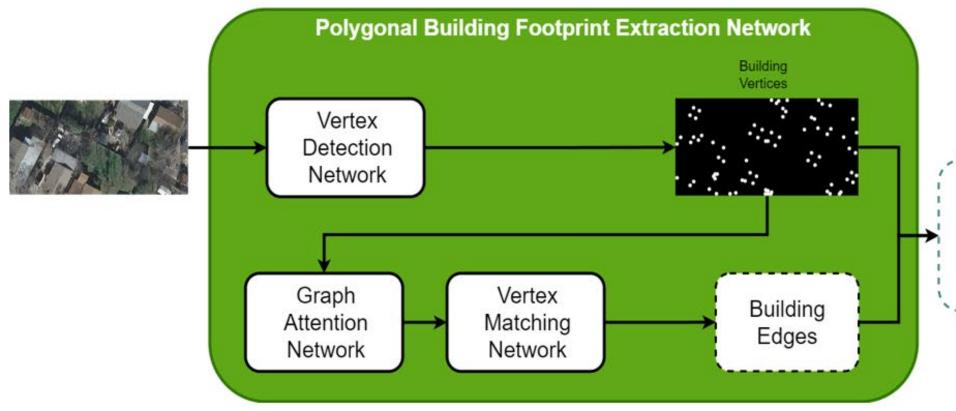
Semantic Segmentation of Buildings



Urban 3D Reconstruction



Building Footprint Extraction



Final

Research in Visual Computing

Melinos Averkiou
Team Leader
Visual Computing Group

email: m.averkiou@cyens.org.cy

Research Interests:

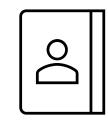
Geometry processing, acquisition, understanding and modeling of 3D geometry, deep learning for 3D objects, including part segmentation, material identification and style detection.

https://www.cyens.org.cy/en-gb/research/pillarsgroups/visual-sciences/deepcamera/people/alessandro-artusi/

https://vcg.cyens.org.cy/

m.averkiou@cyens.org.cy

+357 227 475 75



Dimarchias Square 23 STOA, Nicosia Nicosia, Nicosia 1016, Cyprus

nank you!

113